FCX LISTED

Passive Bioremediation of Mining Influenced Water Treatment Using Sulfate Reducing Bioreactors

I. Lee¹, L. Figueroa², E. Weiland¹, D. Ramey¹

¹ Freeport-McMoRan Copper & Gold Inc.
² Colorado School of Mines

- Introduction
 - Mining Impacted Water
 - Passive Sulfate Reducing Bioreactor
- Goal & Approaches
- Results
 - Bench-scale SRBR operation
 - Full-scale SRBR investigation
- Conclusion and Recommendation

- Acid Rock Drainage (ARD) and other waters related to mining and mineral processing
- Chemistry
 - Low pH with metals and sulfate
 - Common metals: Al, Fe, Cd, Co, Cu, Cr, Ni, Pb, Zn
 - Neutral pH with metal and/or sulfate
 - No Al or Fe
 - Additional metals: As, Mo, Sb, Se, U
- Seasonal fluctuation of flow rate and chemistry
- Pumping MIW back to active mining operation or water collection basin/evaporation
- Necessity of sustainable solutions to capture and treat MIW

FREEPORT-MCMoRAN

EXPANDING RESOURCES

Comparison of Active and Passive Sulfate Reducing Bioreactor (SRBR)

- Biological MIW treatment
 - Cost effective and eco-friendly

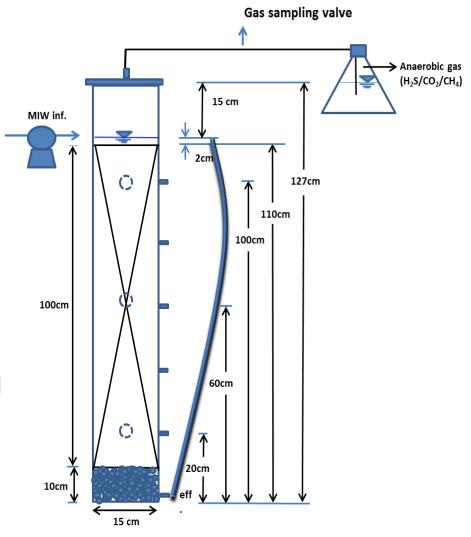
	Active SRBR	Passive SRBR		
Reactor	Completely stirred tank reactor	Packed reactor		
type	Membrane reactor			
	Submerged packed bed reactor			
Microbial	Suspended growth	Attached growth		
growth	Attached growth	(media = substrate)		
Electron donor	Liquid or gas phase	Solid phase Slowly degradable liquid		

- Sulfate reduction rate
 - Active treatment >> Passive treatment

- Attractive for
 - Closed mine or mill sites
 - Remote sites lacking infrastructure
 - Long term MIW source with relatively low flow rate
- System attributes
 - Natural slow release organic substrates
 - Low sludge production & disposal: cost effective & ecofriendly
 - Low level of operation and maintenance

- Produces biogenic sulfide & alkalinity
 - SO_4^{2-} + $2CH_2O$ + $2H^+$ \rightarrow H_2S + $2H_2O$ + $2CO_2$
- Cationic metal removal
 - $M^{2+} + H_2S \rightarrow MS + 2H^+$
- Requires low reduction potential (Eh) < -100 mV
- Electron acceptor is sulfate
- Electron donor is product of natural organic substrate (NOS) fermentation

- Optimal substrate composition for general & specific MIW treatment
- SRBR design & operation factors
 - Optimal metal loading rate: 0.3 mole/m³-d of metal (or sulfate)?
 - Optimal depth of substrate zone: ~3-6 ft?
 - Metal and proton acidity of MIW vs. alkalinity produced from sulfate reduction and limestone
 - Hydraulic retention time (HRT)
 - Maximize sulfate reduction and metal removal rate
 - Minimize the surplus H₂S based on stoichiometric ratio between sulfate reduction rate and metal removal rate
- Pre-treatment and/or post-treatment



- Development of Full-scale SRBR design and operation factors
- Understanding metal removal mechanism
- Bench-scale SRBR operation
 - Comparison of sulfate & metal removal rates and efficiencies of different Natural Organic Substrates (NOS)
 - Evaluation of effect of EBCT on bioreactor performance
 - Investigation of metal & mineral precipitates and microbial community on the surface of NOS
- Full-scale SRBR investigation
 - Necessity of pre- and post-treatments
 - Flow rate and water chemistry

- Height : ID = 50": 6"
- NOS mixture depth: 39"(18 L Vol.)
- NOS: ~1" except sawdust & walnut shell
- Limestone: 0.2" particle
- 5 liquid sampling ports
- 3 solid sampling ports
- Down flow mode

Biochemical Reactor (BCR)

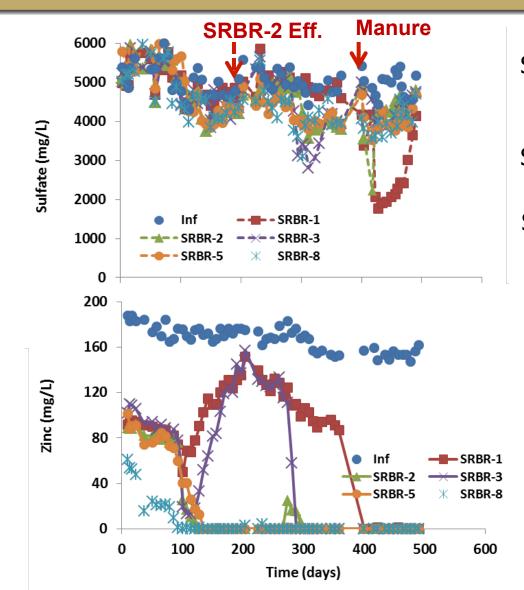
Compositions of NOSs Used for SRBRs

	limestone, wt.%	alfalfa hay wt.%	sawdust wt.%	woodchip wt.%	walnut shell wt.%	total, g	density, g/L
SRBR-1	30	10	10	50		3,890	216
SRBR-2	30	35	35			3,730	208
SRBR-3	30	35		35		3,630	196
SRBR-4	30		35	35		5,220	289
SRBR-5	30	70				3,510	189
SRBR-6	30		70			6,240	341
SRBR-7	30			70		3,940	220
SRBR-8	30				70	14,370	790
SRBR-1			SRBR-2		SRBR-3		SRBR-4
	SRBR-5		SRBR-6		SRBR-7		SRBR-8

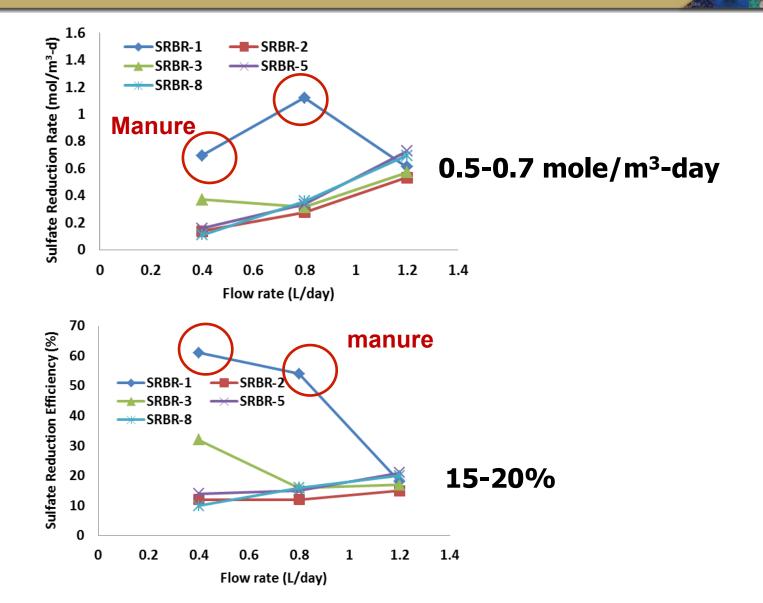
Analytes	рН	SO 4 ²⁻	A	Са	Cu	Fe	Mn	Mg	Zn
Conc.(mg/L)	6.4	5,000	<8.0	560	<0.1	<1.0	4.0	770	170

Inoculation

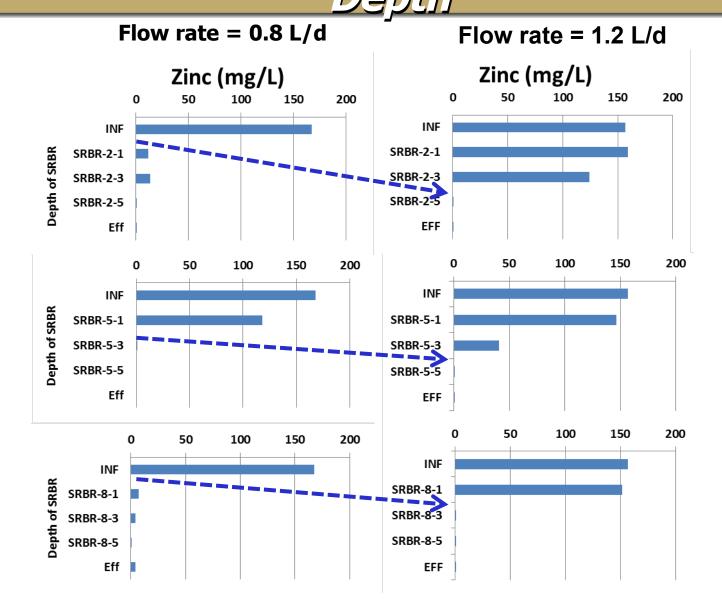
- Day 26: all SRBRs with sulfate reducing mixed culture enriched in Lab
- Day 190: SRBRs-1, 3, 4, 6, and 7 with SRBR-2 effluent
- Day 381: SRBRs-1, 4, 6, and 7 with cow and steer manure
- Flow rates
 - No flow up to day 70
 - Increased from 0.4 to 1.2 L/d based on reactor performance

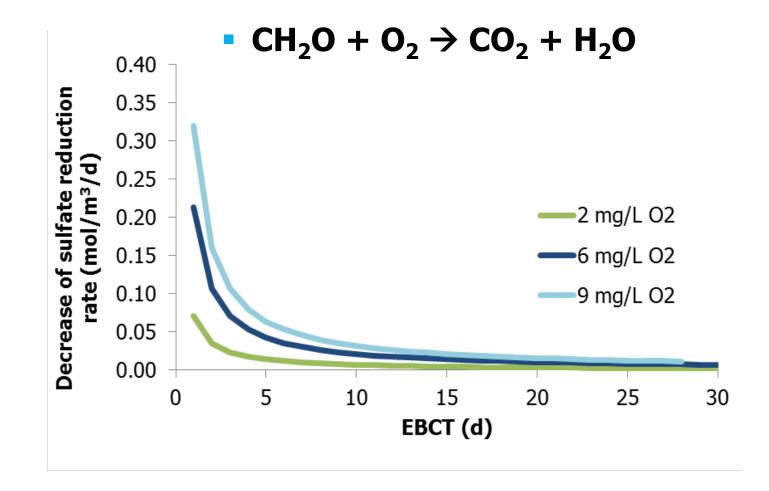

Design parameter	Design value
Flow rate	7 gpm (26.5 L/min)
Metal loading rate	0.3 mole/m ³ -day
Depth of substrate	3 ft. (0.91 m)
EBCT/HRT	34.8 days/17.4 days assuming 50% porosity
pH/sulfate	3.28 / 2,640 mg/L
Metal (mg/L)	Fe (272), Cu (62), Zn (88), Al (22), Mn (27)
Substrate composition (wt.%)	Limestone (30), woodchip (49.5), hay (10), sawdust (10), manure (0.5)

Bench-scale SRBR Results


Substrate – Alfalfa Hay and Walnut Shell

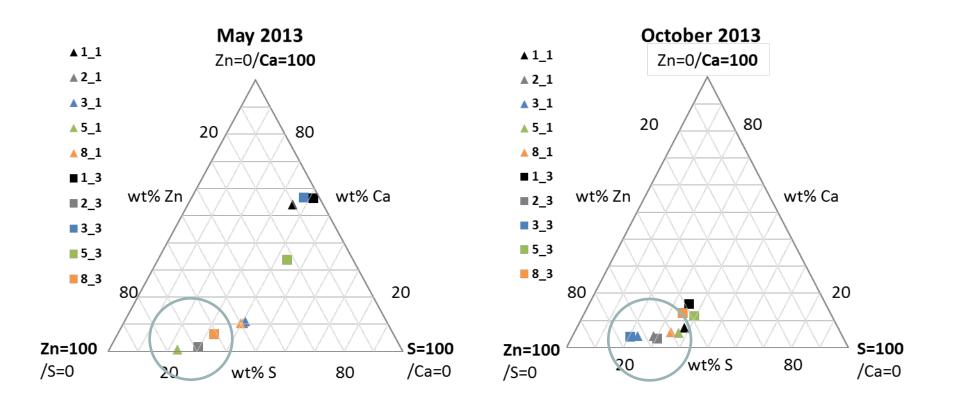
10% SRBR-1: alfalfa hay sawdust 10% woodchip 50% SRBR-2: alfalfa hay 35% sawdust 35% SRBR-3: alfalfa hay 35% woodchip 35% SRBR-5: alfalfa hay 70% SRBR-8: walnut shell 70%

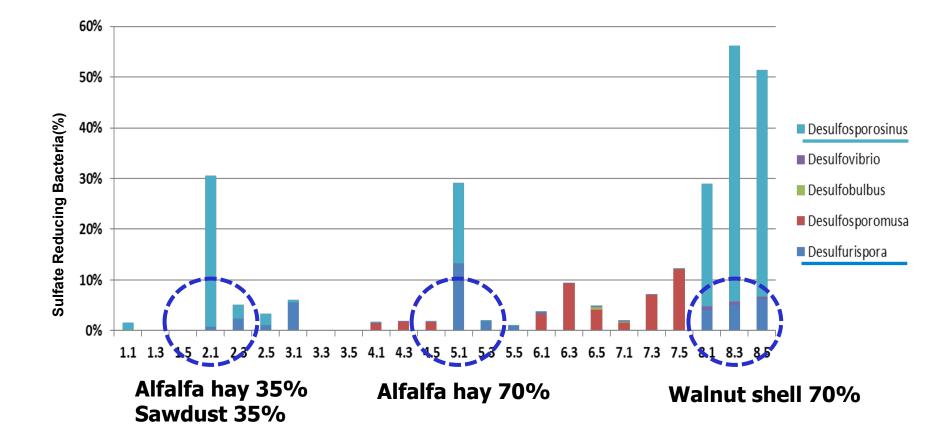

Sulfate Reduction Rate (SRR)


FREEPORT-MCMoRAN Copper & Gold

EXPANDING RESOURCES

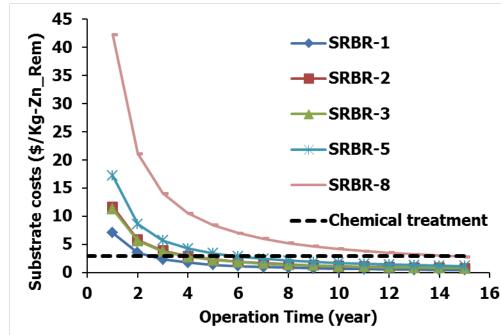
Influence of Flow Rate on Zn Removal Depth





Relative Weight Ratio of Zn, Ca, and S

- $Ca^{2+} + SO_4^{2-} \rightarrow CaSO_4$ $Zn + S^{2-} \rightarrow ZnS$
- $Ca^{3+} + CO_3^{2-} \rightarrow CaCO_3$ $Zn + CO_3^{2-} \rightarrow ZnCO_3$



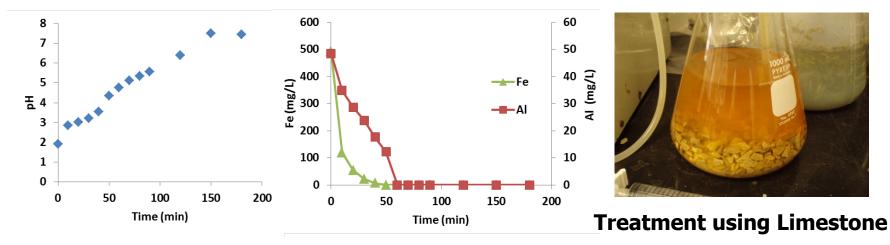
Substrate costs for 18 L of bed volume

SRBRs	SRBR-1	SRBR-2	SRBR-3	SRBR-4	SRBR-5	SRBR-6	SRBR-7	SRBR-8
Costs (\$)	0.525	0.869	0.840	0.488	1.281	0.581	0.375	3.146

*Unit costs (\$/lb): Limestone (0.0172); Alfalfa hay (0.23); Sawdust (0.053); Woodchip (0.054); Walnut shell (0.14)

- EBCT=15 days (1.2 L/d)
- Zinc=170 mg/L
- Chemical treatment costs
 - : ~\$3/kg Zn removal

Full-scale SRBR Investigation Results



Field Investigation

• Al and Fe precipitates can clog SRBR inlet piping and zone

Pre-treatment to increase pH and remove AI and Fe

- Overestimation of MIW quantity and quality for projected treatment duration
 - Average flow rate decreased to 1.82 gpm after 2 year operation, then ~ 1 gpm (design 7 gpm)
 - EBCT ~134 days/265 days (design 34 days)
 - Sulfate reduction rate 0.04-0.08 mole/m³-d
 - Metal loading rate 0.0016-0.05 mole/m³-d

- Mn and metal sulfide particles not effectively removed in SRBR
 - Mn: 8.2 mg/L in influent to 5.2 mg/L in effluent
 - Total Fe in effluent > influent, occasionally
 - Post-treatment required
 - Oxidation, adsorption, ion exchange for Mn
 - Settling, sorption, or filtration for metal sulfide particles

Conclusions & Recommendations

Bench-scale SRBR operation

- Alfalfa hay and walnut shell are efficient electron donors
- Deeper substrate depth to treat higher flow rate MIW
- Suggested design factors for the specific MIW:
 - Empty bed contact time: 15 days
 - Minimum substrate depth: 3 ft.
 - Sulfate reduction rate: 0.5-0.7 mole/m³-day (associated Zn removal > 0.17 mole Zn removal/m³-day)

Full-scale SRBR investigation

- Pre-treatment to increase pH and remove AI and Fe prior to SRBR
- Post-treatments to remove Mn and metal sulfide particles from SRBR

- Operating pilot-scale SRBRs on a site
- Limestone pretreatment to pH 5.5 using pH < 3.5 MIW containing high AI and Fe
- Comparison of sulfate and metal removal between walnut shell and pecan shell packed SRBR

- FCX Environmental Technology laboratory staffs
 - Mr. Shane Hansen
 - Mr. Theron Hansen
 - Mr. Leonard Colvin, Jr.
 - Mr. Nam Ho
- CSM research collaborators
 - Dr. Jonathan Sharp
 - Dr. Lee Landkamer
 - Ms. Dina Drennan
 - Mr. Jeffrey Ladderud

Thank you for your attention.