Stream Restoration Remediation -Designing MTMs to Maximize On-site Stream Reconstruction

Leslie C. Hopkinson John D. Quaranta Nathan DePriest

WEST VIRGINIA UNIVERSITY Department of Civil and Environmental Engineering

Can we use *Geomorphic Landform Design* principles to rethink valley fill design?

AOC Variance Valley-Fill Design

Conceptual Geomorphic Reclamation Design

Can we use *Geomorphic Landform Design* principles to rethink valley fill design?

	Traditional	GLD
Stability	Short-term stability with long-term erosion	Dynamic equilibrium
Appearance	Geometric	Natural appearance
Maintenance	Continuous maintenance	Suggested reduction in maintenance

Reference landform characteristics must be quantified.

Uses a reference landform design approach

	Traditional	GLD
Stability	Short-term stability with long-term erosion	Dynamic equilibrium
Appearance	Geometric	Natural appearance
Maintenance	Continuous maintenance	Suggested reduction in maintenance

Objectives: Can stable landforms be designed such that streams are mitigated or preserved on site, while maintaining the same overall footprint as conventional reclamation?

- 1. Obtain and quantify characteristics of mature landforms in West Virginia.
- 2. Generate geomorphic valley fill designs, using data specific to Central Appalachia mining regions.

This project will define the reference landform characteristics necessary for design.

- Drainage density
- Ridge to head of channel distance

- Main channel slope
- Channel characteristics
 - Bankfull width
 - W:D
 - Sinuosity
- Bed particle size distribution
- Vegetation zones
- Subridge angle
- Baseflow (where applicable)

This project will define the reference landform characteristics necessary for design.

- Drainage density
- Ridge to head of channel distance

- Main channel slope
- Channel characteristics
 - Bankfull width
 - W:D
 - Sinuosity
- Bed particle size distribution
- Vegetation zones
- Subridge angle
- Baseflow (where applicable)

Task 1: Obtain and quantify characteristics ofmature landforms in West Virginia.

<u>Mature landforms</u> Twin Falls State Park

- 2 watersheds
 Cabwaylingo State Forest
 - 1 watershed

Long-term reclaimed sites Summersville, WV

2 valley fills

Ridge to head of channel distance: Head of channel locations and ridge points were surveyed with a Topcon GPS.

Field data was collected at 8 heads of channel in Dixon, 11 in Jackson, and 3 in Wiley.

Channel/valley characteristics were defined for each site.

- Channel slope
- Channel cross-section Grain size
- Sinuosity

- Discharge
- Vegetation

Dixon Watershed

Erosion was also observed and identified on two valley fills.

Grain size: The majority of bed material was sand and gravel.

Ridge to head of channel (RTHOC) distance was calculated as the distance from head of channel to associated ridge point.

Ridge to head of channel (RTHOC) distance was calculated as the distance from head of channel to associated ridge point.

Average RTHOC distance was applied to unmapped valleys.

Average RTHOC distance was applied to unmapped valleys.

Drainage density was calculated as 61.7 ft/acre (±23%).

The majority of slopes were in the range of 20-40%.

Slopes aspects were well distributed among all directions.

Consistent with field site selection criteria, vegetation was dense core forest.

Erosion sites were found across the face of the slope at the same location between benches.

Majority of slopes ranged from 20-40%.

Majority of slopes faced in the direction the fill was pointed.

Majority of vegetation was dense core forest.

Slope

Aspect

Vegetation

Measured landform characteristic varied from software recommended values.

Input	Default	Measured
ROTC (ft)	80	408
Target drainage density (ft/ac)	100	61.7
Target drainage density variance (%)	± 20	± 23
Slope at the mouth of main valley bottom channel (%)	2	3

Task 2: Create landform designs for valley fills in southern West Virginia.

site, while maintaining the same overall footprint as conventional reclamation?

Task 2: Create landform designs for valley fills in southern West Virginia.

VF1

Preserved

Created

VF1: Preserving channels accounted for 65% of the overburden

Preserved

VF1: Preserving channels accounted for 65% of the overburden

Preserved

VF1: Creating channels accounted for 98% of the overburden

VF1: Creating channels accounted for 98% of the overburden

VF2

Created

VF2: Preserving channels accounted for 53% of the overburden

VF2: Preserving channels accounted for 53% of the overburden

VF2: Creating channels accounted for 85% of the overburden

Created

VF2: Creating channels accounted for 85% of the overburden

Created

Created channel designs landform and stream characteristics:

	VF1-C	VF2-C
Watershed area (ac)	10.1	20.7
Valley length (ft)	502	1007
Drainage density (ft/ac)	50	49
Head elevation (ft)	1121	1140
Base elevation (ft)	955	916
Relief (ft)	166	224
Head slope (%)	29	20
Base slope (%)	10	8
Slope range (%)	9.7 to 35	8.5 to 23.5
Bankfull width range (ft)	0.3 to 5.16	0.66 to 7.38
Bankfull depth range (ft)	0.03 to 0.52	0.07 to 0.74
Width to depth ratio, slope <4%	12.5	12.5
Width to depth ratio, slope >4%	10	10
Flood prone width range (ft)	0.63 to 10.8	1
Flood prone depth range (ft)	0.07 to 1.22	1.38 to 15.45
Entrenchment ratio	2.09	2.09

Future work:

- 3rd valley fill
- Perennial streams
 - Pond design
- Slope stability analysis
- Channel characteristics
 - Erosion and sediment transport
- Hydrologic response
- Groundwater

Related work: Hydrologic response

Related work: Hydrologic response

Related work: Slope stability

Failure Plane	Hydraulic Condition	$\beta^{0}=tan^{-1}(y/x)$	Critical Deterministic Factor of Safety		
AOC Valley Fill - Saturated					
Crest	Saturated	26.57	1.41		
Toe	Saturated	26.57	1.51		
Face	Saturated	26.57	1.39		
Deep	Saturated	26.57	1.38		
AOC Valley Fill - Unsaturated					
Crest	Unsaturated	26.57	1.67		
Toe	Unsaturated	26.57	1.25		
Face	Unsaturated	26.57	1.37		
Deep	Unsaturated	26.57	1.30		
Geomorphic - Saturated					
Crest	Saturated	11.43	2.04		
Toe	Saturated	17.63	2.14		
Face	Saturated	15.47	2.42		
Geomorphic - Unsaturated					
Crest	Unsaturated	11.43	2.31		
Toe	Unsaturated	3.84	3.49		
Face	Unsaturated	7.34	2.15		

Related work: Groundwater modeling

Conclusions

- Data on the geomorphic properties of mature and reclaimed landforms in southern WV have been compiled.
- Input values for geomorphic designs have been determined for landforms specific to Central Appalachia.
- Preliminary results indicate that landforms can be created with a similar footprint.

– Varies by location and size

• Future work will test for stability and hydrologic response.

QUESTIONS?

VF1: Preserving channels accounted for 65% of the overburden

Preserved

VF1: Creating channels accounted for 65% of the overburden

Created

VF2: Preserving channels accounted for 53% of the overburden P_{70}

VF2: Creating channels accounted for 85% of the overburden

Created

