Operational and Financial Studies of H₂O₂ vs. Ca(OH)₂ and H₂O₂ vs. NaOH at Two Pennsylvania Mine Drainage Treatment Sites

Brent Means - Office of Surface Mining Rich Beam - Pennsylvania Bureau of Abandoned Mines Don Charlton - AMD Industries

NaOH dosing location

88

Mon-View Mathies

88

	Flow	рН	D-Fe	T-Fe	Alkalinity	
Influent	300- 2000	6.8	34.8	46.8	400	
Values in mg/L and gnm alkalinity – mg/L as CaCO2						

LTV Banning Treatment System

Values in mg/L and gpm, alkalinity = mg/L as CaCO₃

394

LTV Banning and Mon-View Mathies Cost-Reduction Evaluation

- Recent financial market condition has affected trust revenue generation
- PADEP with the assistance of OSM formed evaluation team to perform cost-reduction evaluations
- Evaluation team focused on reducing annual operation and chemical costs

Cost-Reduction Evaluation

- 5-Step Approach
 - 1. Determine current dosing rates;
 - 2. Quantify consumption of alkali chemical;
 - 3. Develop alternative treatment strategies;
 - 4. Pilot test alternative strategies;
 - 5. Perform cost and performance comparison evaluation

Step 1: Quantify original Mon-View NaOH Costs

Mon-View: Results	of Original	20% S	odium Hyo	droxide	e (w/w) Treat	ment (Configu	ation
Sample Location	Flow (gpm)	Field pH	Field Alkalinity	Ca - D	Ca - T	Fe - D	Fe - T	Na - D	Na - T
Reaction tank Influent	396	6.86	400	96.5	100	34.8	46.3	448	468
Reaction tank Effluent	396	7.22	385	95.5	102	4.306	46.2	475	515
Final Effluent	396	7.48	375	94.3	97.2	1.1	1.09	454	502
All values in mg/L, Alkalinity = mg/L as CaCO ₃ , D = Dissolved, T = Total									

20% NaOH Dosing = 122 gal/day = \$116/day = \$42,340/yr

Step 1: Quantify Banning Hydrate Costs

Banning :	Results of	[:] Original	Hydrated	Lime T	reatm	ent Co	nfiguat	tion	
Sample Location	Flow (gpm)	Field pH	Field Alkalinity	Ca - D	Ca - T	Fe - D	Fe - T	Na - D	Na - T
Reaction tank Influent	2310	6.89	394	114	112	18	18.0	434	432
Reaction tank Effluent	2310	8.28	310	87.5	256	0.026	16.9	440	444
Final Effluent	2310	8.25	306	71.5	92	<.020	1.0	390	462
All values in mg/L, Alkalinity = mg/L as CaCO ₃ , D = Dissolved, T = Total									

Hydrated Lime Dosing = 3.77 tons/day = \$603/day = \$220,168/yr

STEP 2: Quantify Sources of Alkali Consumption

- **1.** Fe(II) Removal
 - $Fe^{2+} + 2OH^{-} = Fe(OH)_{2}$
 - $Fe^{2+} + .5H_2O + .25O_2 + 2OH^2 = Fe(OH)_3$

2. Calcite Formation

- Dissolved-precipitate $Ca^{2+} + OH^{-} + CO_{2(aq)} = CaCO_{3(s)} + H^{+}$
- Recarbonation $Ca(OH)_{2(s)} + CO_{2(aq)} = CaCO_{3(s)} + H_2O$

Step 2: Quantify Sources of Alkali Consumption

- **3.** Hydroxylation Reaction with OH⁻ ion with aqueous species to form H2O and other species
 - Hydroxylation of anion $HCO_3^- + OH^- = CO_3^{2-} + H_2O$
 - Hydroxylation of cation
 Mg²⁺ + OH⁻ = MgOH⁺
 - Hydroxylation of Aqueous complexes $CaHCO_3^+ + OH^- = CaCO_{3(aq)} + H_2O$

Calcite Formation resulting from pH

adjustment

 $Ca^{2+} + OH^{-} + CO_{2} = CaCO_{3} + H^{+}$

Daily Consumption of NaOH at Mon-View

Hydroxylation
Fe Removal
Calcite Formation

Daily Consumption of Hydrated Lime at Banning

Using pH adjustment as a treatment strategy is costing \$561/day worth of nuisance consumption to treat 18 mg/L of Iron

Validation of Consumption Analysis

	Mon-View	Banning
Influent Alkalinity	400	394
Measured Alkali Dosing	65	252
Total Alkalinity Inputs	465	646
Computed Alkali Consumption	125	337
Calculated Effluent Alkalinity	340	309
Measured Effluent Alkalinity	375	310
Percent (%) Difference	-9%	3%
All values = mg/L as $CaCO_3$		

Step 3: Develop alternative Treatment

Strategy to reduce Cost

Pilot Test 50% H₂O₂

• Eh adjustment

Hydrogen Peroxide (H₂O₂)

- Benefits
 - 1. Avoids consumption due to hydroxylation and calcite formation;
 - 2. Targets iron;
 - 3. Low sludge production;
 - 4. Low Capital Cost and maintenance;
 - 5. Stable supply and pricing
- Drawbacks
 - 1. Safety very strong oxidant;
 - 2. Containment and spill mitigation plan is required;
 - 3. Secure site facility

Step 4: Pilot test to gather performance and cost data

Step 4: Pilot test to gather performance and cost data

Banning H₂O₂

Iron Plume Formation on in one area of Clarifier resulting in elevated effluent Total Fe Tried to Chemically-Overcome Short Circuiting/settling issue

- 50% H₂O₂ & Alum
- 50% H₂O₂ & DelPAC 2020 (Polyaluminum Chloride)
- 50% H₂O₂ & Nalco Pol E-Z (Anionic Polymer)
- $50\% H_2O_2 \& Ca(OH)_2$

In 4 minutes the dye reached the effluent weir and the dye plume mimicked the iron plume

Sludge accumulation within clarifier causing short circuiting?

Unlevel Center Well or side wells causing preferential flow?

Modified Influent Flume

Fixed the Clarifier short circuit (no area-specific plume)!!!

Step 5: Cost & Performance Analysis between original and pilot systems

Monview Comparative Analysis								
	Reagent	Dose (gal/day)	\$/day	Effluent pH	Effluent T-Fe (mg/L)			
Original System	20% NaOH	122	\$116	7.4	1.01			
Pilot System	35% H2O2	14	\$46	7.2	1.4			

* NaOH = .95/gal, $H_2O_2 = .30/gal$

Step 5: Cost & Performance Analysis between original and pilot systems

Banning Comparative Analysis								
	Reagent	Dose (gal/day)	\$/day	Effluent pH	Effluent T-Fe (mg/L)			
Original System	Ca(OH) ₂	3.77 ton/day	\$603	8.25	1.0			
Pilot System	50% H ₂ O ₂ & Ca(OH) ₂	25 gal/day & 1.2 ton/day	\$275	7.5	1.0			

* $Ca(OH)_2 = \frac{160}{ton}, H_2O_2 = \frac{3.30}{gal}$

Conclusions

- Mon-View
 - Annual cost savings of \$25,500
 - Implemented bulk H2O2 System for \$25,000
- Banning
 - Annual cost savings of \$120,000 could save the trust \$1.1 million over the next decade
 - Plan to implement a bulk H₂O₂ system in 2013
 - Conduct cost reduction evaluations at other LTV sites
 - Anticipated annual cost savings of \$220,000