SELENIUM TOXICITY IN AQUATIC SYSTEMS

By Dr. Mindy Armstead Marshall University Huntington, West Virginia

Selenium Sources and Issues

- Micronutrient necessary for healthy organisms and communities
- Mining locally from shale and coal, coal combustion products
- Nationally and internationally mining
- Agriculture concentration from irrigation

Selenium Sources and Issues

- Water quality criteria changes ongoing
- Multiple forms occur naturally
- Bioaccumulates through food chain
- Transfers maternal via yolk sack
- Effects seen in birds and fish

Selenium Sources and Issues

- Lentic and lotic differences
- Acute versus chronic effects
- Selenate versus selenite toxicity

Introduction

Lake food chain

http://wwwrcamnl.wr.usgs.gov/isoig/projects /fingernails/images/bigFIG2-aquaticfoodweb.gif

Stream food chain

Hatfield 2007 at: <u>http://www.orangesenqurak.com/river/ecology</u>+ biodiversity/aquatic+ecology/liae/chains+and+webs.aspx?print=1

Chronic effects on fish

- Individual effects
 - Teratogenic deformities
 - Edema
- Community level effects
 - Reduced survival
 - Reduced recruitment
 - Population declines

(Lemly, 1997)

Chronic effects on fish

Threshold levels

- 7.9 mg/kg dw whole body
- 18 20 mg/kg egg/ovary
- Conversion
- Reproductive studies evaluating deformities EC10
- Predictive modeling

A Reproductive and Trophic Transfer Study Associated With Selenium Concentrations in the Upper Mud River Watershed

Amanda Wilson

Marshall University Master of Environmental Science

Presented at the International Conference on Acid Rock Drainage, Ottawa Canada, May 2012

Ongoing work - evaluating the mechanics of selenium bioaccumulation

- Monthly collections of water, periphyton, macroinvertebrates and fish
- Selenium evaluation of each food web component (including whole body and egg ovary for fish)
- Evaluating reproduction for selenium effects
- 3 sampling sites for dose response

Chronic effects on fish

Threshold levels

- 7.9 mg/kg dw whole body
- 18 20 mg/kg egg/ovary
- Conversion
- Reproductive studies evaluating deformities EC10
- Predictive modeling

Selenium bioaccumulation among select stream and lake fishes in West Virginia – WVDEP 2009

Site	Stream Code	Avg. Water Column Conc. (ppb)	Avg. Fish Tissue Conc. (ppm)	Avg. Sunfish Tissue Conc. (ppm)	Avg. Minnow Tissue Conc. (ppm)	Avg. BAF (L/kg)
Mining Influenced						
Streams		9.39	6.21	6.07	5.74	1179
	WVKC-10-T-					
Beech Creek	15	12.30	7.55	7.34	7.64	613
Pond Fork	WVKC-10-U	2.40	3.64	4.03	2.76	1515
White Oak Creek	WVKC-35	15.80	6.77	7.12	6.42	428
Seng Creek	WVKC-42	27.20	8.16	NA	8.16	300
Hughes Fork	WVKG-5-B-4	5.30	7.97	NA	7.97	1503
Pinnacle Creek	WVOG-124	2.50	6.02	6.78	5.11	2520
Kiah Creek	WVO-2-Q-18	1.60	2.70	2.73	2.68	1690
Mud River	WVOGM	8.00	6.89	8.43	5.20	862
*Sycamore Creek	WVKC-47-E	1.00	4.00	NA	4.00	4448
Reference Stream						
Ash Fork	WVKG-5-H	0.94	2.50	NA	2.50	2500

*Not used in derivation of averages

Selenium bioaccumulation among select stream and lake fishes in West Virginia – WVDEP 2009

Site	Stream Code	Avg. Water Column Conc. (ppb)	Avg. Fish Tissue Conc. (ppm)	Avg. Sunfish Tissue Conc. (ppm)	Avg. Minnow Tissue Conc. (ppm)	Avg. BAF (L/kg)
Mining Influenced						
Impoundments						
Upper Mud River Reservoir	WVOGM-(L1)	3.50	23.11	23.11	NA	6601
East Lynn Lake	WVO-2-Q- (L1)	1.00	2.96	2.96	NA	2965
Reference Impoundments						
Elk Fork Lake	WVO-32-M- (L1)	1.00	1.03	1.03	NA	1033
Plum Orchard Lake	WVK-65-Z- (L1)	1.00	1.69	1.69	NA	1694

Selenium WB and E/O Fish Tissue Concentrations

Selenium WB and E/O Fish Tissue Concentrations

Determining safe level for selenium in fish -Reproductive effects

- Develop dose-dependent response (deformities and egg/ovary concentration) EC10
- Evaluate effects threshold for deformity in fish
- Establish whole body to egg/ovary conversions

Introduction

Means, 1995

Reproductive Study Methods Egg and Fish Tissue Collection

Fish Nest

Reproductive Study Methods

Reproductive Study Methods

Reproductive Study Methods

Deformities (continued)

POTESTA, 2009

POTESTA, 2009

Reproductive Study Methods Deformities (continued)

Finding Nemo, 2003

POTESTA, 2009

Teratogenic deformities in relation to selenium wholebody fish tissue concentrations – single watershed Teratogenic deformities in relation to selenium wholebody fish tissue concentrations – statewide

Whole-body fish tissue selenium from mining influenced streams in West Virginia

Summary – lotic fish toxicity

- Graph represents over 14,000 larval fish
- Tissue concentrations generally not sufficient to induce greater than 10% deformity
- Background deformity rates less than 1%
- Selenium toxicity generally not indicated by tissue concentrations and deformity rates in lotic environments

Lake food chain

http://wwwrcamnl.wr.usgs.gov/isoig/projects /fingernails/images/bigFIG2-aquaticfoodweb.gif

Summary – lentic fish toxicity

- Greater potential for toxicity in lentic environments
- Specific examples of elevated selenium in fish tissue
- Deformity rates in Mud River Reservoir not greater than 10%
 - (13% in WVDEP first year of study but less than that in subsequent years)

Macroinvertebrate toxicity

- Proposed dietary thresholds range from 3 to 11 ug/g dw
- Not generally believed to be an issue
- Endpoints reduction in growth and fecundity
- One paper indicating reduction in mayfly size and fecundity – utilized selenite to load periphyton
- Work ongoing looking at periphyton and benthic macroinvertebrate selenium concentrations.

Benthic selenium concentrations - 2009

Acknowledgements

• We would like to thank the Appalachian Research Initiative for Environmental Science for the continued support of this research. Additionally, we would like to thank Patriot Coal Corporation and Alpha Natural Resources for their contributions to this research.