

Simulating Interbasin Transfer in Abandoned Coal Mines

Elkhorn area, McDowell County, WV

Mark D. Kozar – Hydrologist Kurt J. McCoy - Hydrologist

Outline

- 1. Pocahontas No. 3 coal mine aquifer in Elkhorn, WV
- 2. Overview of field data collection
- 3. Topographic vs. Dip-driven flow: Assessment of groundwater basins
- 4. Context for the Elkhorn Model
- 5. Model Methods Summary Aquifer Properties vs. Boundary Conditions

Elkhorn Area, McDowell County WV

Poca #3 Seam

Complete Mine-Out

Above-Drainage

Discharge Used for Water Supply

BOREHOLE LOGS

Cyclical Coal Sequences-Massive sandstones Permeability in Coals

Borehole-geophysical logs for borehole Mod-0205 (Well 7), collected on August 23, 2009, near Figure XX. Elkhorn, West Virginia.

Figure XX Borehole-geophysical logs for borehole Mcd-0206 (Well 5), collected on August 20, 2009, near Eikhom, West Virginia.

WATER LEVEL MONITORING

Figure xx. Ground-water level hydrographs from study area wells.

DISTANCE ALONG STRUCTURE TRANSECT A - A', IN FEET

Abandoned Workings on Structure Contours

Approx. 6 miles

Baseflow Separation for Groundwater Recharge

Table X.Streamflow and mean ground-water recharge rates estimated from baseflow recession (PART) of streamflow data in McDowellCounty, West Virginia.

[mi2, square miles; in/yr, inches per year; cfs, cubic feet per second; %, percent]

Site ID	Station name	Drainage area (mi ²)	Period of	Mean streamflow (cfs)	Recharge (in/yr)	Recharge (cfs)	Baseflow index (%)
3212558	PUNCHEONCAMP BRANCH AT LECKIE, WV	1.4	1981	1.01	8.1	0.81	80.2
3212567	FREEMAN BRANCH NEAR SKYGUSTY, WV	0.3	1981	0.16	4.5	0.1	63.6
3212580	LEFT FORK SANDLICK CREEK AT ELBERT, WV	1.7	1981	1.27	9.0	1.12	87.9
3212585	RIGHT FORK SANDLICK CREEK NEAR GARY, WV	1.2	1981	0.51	3.2	0.29	56.2
3212600	TUG FORK AT WELCH. WV	85.9	1979-1980	103.53	12.0	76.04	73.4
3212640	JOHNS KNOB BRANCH AT ELKHORN, WV	0.8	2009	5.43	89.8	5.35	98.5
3212700	ELKHORN CR AT MAITLAND, WV	69.9	1979	149.83	23.9	123.19	82.2
3212703	ELKHORN CREEK TRIBUTARY AT WELCH, WV	0.6	1981	0.32	3.7	0.17	54.7
3212750	TUG FORK AT WELCH, WV	174	1986-1992	198.63	12.3	157.78	79.4
3212750	TUG FORK AT WELCH, WV	174	1997-2008	196.24	12.3	157.29	80.2
3212980	DRY FORK AT BEARTOWN, W. VA.	209	1986-1992	224.91	9.5	146.35	65.1
3212980	DRY FORK AT BEARTOWN, W. VA.	209	1997-2009	219.22	9.1	140.42	64.1
3212985	DRY FORK AT AVONDALE, WV	225	1979-1980	295.65	11.4	189.43	64.1
3213000	TUG FORK AT LITWAR, WV	504	1931-1983	555.44	9.1	338.86	61
3213495	CRANE CREEK NEAR PANTHER, WV	0.5	1981	0.44	6.2	0.25	56.6
3213500	PANTHER CREEK NEAR PANTHER, WV	31	1947-1985	35.17	7.4	16.83	47.8
3213500	PANTHER CREEK NEAR PANTHER, WV	31	2003-2008	36.17	7.5	17.06	47.2
			mean	119.1	14.1	80.7	68.4
			median	36.2	9.1	17.1	64.1

Figure xx. Hydrograph and precipitation from USGS gaging station 03212640 Johns Knob Branch at Elkhorn, West Virginia.

Pre-Mining Hydrology

Fopographically-Driven Flow

Post-Mining Hydrology

Dip-Driven Flow

MODELING and MINING

- 1. MINE TO MINE INTERACTION GRAM (Sherwood and Younger, 1994) VSS-NET (Adams and Younger, 2001)
- 2. FLOW TO AN ADIT MODBRNCH (Zhang and Lerner, 2000) MIFIM (Banks, 2001)
- **3.** ASSESS RESIDENCE TIMES ArcHydro (Winters and Capo, 2004).
- 4. INFLOW TO WORKINGS MIFIM (Banks, 2001); ArcHydro (Winters and Capo, 2004) MODFLOW (Zaidel and others, 2010)
- **5. GROUNDWATER REBOUND** MODFLOW (Toran and Bradbury, 1988)
- 6. WATER BUDGETS MODFLOW (Goode and others, 2010)
- **7. COMPLEX** Hydromechanical, variably saturated (Elsworth and Liu, 1995, etc.)

(Goode and others, 2010)

(Winters and Capo, 2004)

MODFLOW and MINING

Booth (2002) – "...generally quite inappropriate for the non-Darcian flow through the mine openings..."

"...variably saturated media above mine is problematical..."

"...problems encountered in relation to spatial and temporal discretization."

"...flow through large voids will often be turbulent

- Adams and Younger (2001)

"The unusual characteristics of mines and data limitations appear to have restricted the success of these models."

Zhang and Lerner (2002)

MODFLOW and MINING

Summary of Problems:

1. Turbulent Flow: High K workings = High Velocity

2. Nonconvergence:

Geologic heterogeneities Explicit modeling of multiple seams Variable saturation

Adapted from http://www.cvphysiology.com/Hemodynamics/H007.htm

Purpose – Water Budget

 Darcian modeling of mine aquifer systems is difficult, but results can be used for regional-scale (100s to 1000s km²) water balance (Adams and Younger, 2001)

Elkhorn Study Area = 152 km²

Elkhorn Model Domain – Poca No. 3

Figure #. Map showing the domain, drain cells simulating streams, river cells, no-flow boundaries, and the finite difference grid for the numerical groundwater-flow model developed for the Elkhorn area, McDowell County, West Virginia.

Model Layers

County, West Virginia. [NAD-83, North American Vartical Datum of 1983; cross section patterened from row 89 of model].

Figure 26. Recharge for three distinct regions within the numerical groundwater-flow model developed for the Elkhorn area, McDowell County, West Virginia.

Figure 4. Distribution of Pydrautic conductivity in layer 3 of the numerical groundwater flow model developed for the Elkhom ama, McDowell County, West Virginia.

Layer 3

81/25/0°W

Figure #. Distribution of hydraulic conductivity in layer 2 of the numerical groundwater flow model developed for the Ekhom area, McDowell County, West Virginia.

Hydraulic Properties

81'22'30'W

Figure 8. Distribution of hydraulic conductivity in layer 3 of the numerical groundwater flow model developed for the Elkhom area. McDowell County, West Virginia.

Figure #. Distribution of hydraulic conductivity in layer 4 of the numerical groundwater flow model developed for the Elkhorn area, McDowell County, West Virginia.

Results – High K Mine Aquifer Concept

Method 1: K _{coal} >>> K _{ss,ls,sh}						
	Simulated flow ft ³ /s	Measured flow ft ³ /s				
North Fork	11.23	9.07				
Elkhorn Creek	11.71	16.5				
Johns Knob Branch	0.39	3.13				
Buzzard Branch	2.36	3.14				

Highly Permeable Mine Aquifer

Method 2: K_{haulage} >>>> K_{coal} >> K_{ss,ls,sh}

	Simulated flow ft ³ /s	Measured flow ft ³ /s
North Fork	11.18	9.07
Elkhorn Creek	12.17	16.5
Johns Knob Branch	0.52	3.13
Buzzard Branch	2.89	3.14

Highly Permeable Mine Haulways

- 1. Poor agreement with observed flow data
- 2. Heads 100s of ft above mine void
- 3. Topographicdriven flow

What is the role of the mine void?

- Permeability contrast alone cannot explain observed heads and flows
- Internal head dependent boundary condition (DRAIN)

 $Q_{mine} = f(H_{mine}, H_{aq})$

Figure #. Locations of drain cells used in the numerical groundwater flow model to simulate the free-flowing mine entires of the abandoned Pocahonts No. 3 coal mine workings in the Elkhorn area, McDowell County, West Virginia.

Revised Model Results

1. Highly Permeable Mine Aquifer

2. Highly Permeable Mine Haulways

3. Internal head dependent boundary

Method 3: Qmine = f(h _{mine} , h _{coal})						
	Simulated flow ft ³ /s	Measured flow ft ³ /s				
North Fork	9.09	9.07				
Elkhorn Creek	16.35	16.5				
Johns Knob Branch	3.39	3.13				
Buzzard Branch	2.45	3.14				

K layer, or B) simulated as drains in the groundwater-flow model for the Elkhorn area, McDowell County, West Virginia.

- Model simulation of mine workings is crude with many simplifying assumptions.
- Just beginning to place flow at adits in context of regional mass balance.
- Role of the mine aquifer in conversion of topographic to dip-driven flow requires head dependent flux boundaries be satisfied.