SELENIUM TREATMENT ARCH-EASTERN, BIRCH MINE

WEST VIRGINIA MINE DRAINAGE TASK FORCE SYMPOSIUM

March 27, 2012

Conestoga-Rovers & Associates Arch Coal, Inc.

Conestoga-Rovers & Associates (CRA)

• Al Meek

Arch Coal, Inc.

• Keith Odell

Bratton Farm

• Ben Faulkner

Arch-Eastern, Birch Mine

>In March of 2011 a Consent Decree was entered by WVDEP requiring corrective action to comply with Selenium standard (i.e., 4.7 μ g/l (average) and 8.2 μ g/l (maximum)) at 10 discharge points on the Knight Ink surface mine.

>A corrective action plan developed by Arch and CRA to establish the following:

- Establish design criteria for treatment of waters associated with discharge points identified in the Consent Decree
- Determine applicability of new and existing selenium treatment technologies
- Complete alternatives analysis of selenium treatment system options.
- Select Treatment Alternative
- Design and construct system
- Initial compliance by August 2012

Arch-Eastern, Birch Mine Overview

Knight Ink Permit (800 acres)

CONESTOGA-ROVERS & ASSOCIATES

Knight Ink Permit S-2019-88

Establishing Design Criteria

• Design Flow Rates

- Hydrologic Modeling of Surface Runoff, Infiltration, Evapotranspiration and Shallow Ground Water (pit floor discharge)
 - Developed Base Model (calibrated with weir data)
 - Applied Base Model to 2010 rainfall
 - Inserted 10yr, 24 hr. rain event in 2010 model year
- Design Selenium Concentration
 - Historical review of NPDES outfall monitoring
 - Surface water runoff analysis
 - Surface runoff and seep flow components of outfall concentrations

Hydrologic Modeling-Conceptual Model

Hydrologic Modeling

Consisted of Three Separate Models

- Surface Runoff
- Infiltration/Evapotranspiration
- Pit Floor (Seepage flow)
- Utilized the EPA developed Storm Water Management Model (PCSWMM)
- Conducted on-site flow monitoring to calibrate model.
- Utilized 2010 rainfall data and inserted a 10 yr, 24 hour event.

Hydrologic Modeling-Surface Runoff

Arch Coal,

Inc.

Hydrologic Modeling-Pit Floor Drainage Area

Hydrologic Modeling-Infiltration

Hydrologic Modeling- Model Calibration

Hydrologic Modeling- Model Calibration

CONESTOGA-ROVERS & ASSOCIATES

Hydrologic Model- Model Calibration

Model Calibration

Model Output- surface/seep flow (2010 rainfall) by discharge

Date/Time	Precipitation	W002	W002	W002		
		Runoff	Seep Flow	Total Flow	T. Acre Ft	% runoff
M/d/yyyy	(in)	gpm	gpm	gpm	per day	of T. Flow
5/8/2010	0.28	0.0	43.9	43.9	0.19	0.00%
5/9/2010	0	20.4	84.2	104.5	0.46	19.47%
5/10/2010	0	0.0	57.2	57.2	0.25	0.00%
5/11/2010	0	0.0	39.8	39.8	0.18	0.00%
5/12/2010	0.22	0.0	29.0	29.0	0.13	0.00%
5/13/2010	1.66	14.2	53.7	67.9	0.30	20.91%
5/14/2010	0	2460.7	150.0	2610.8	11.54	94.25 %
5/15/2010	0.47	0.0	145.4	145.4	0.64	0.00%
5/16/2010	0	60.9	217.2	278.2	1.23	21.90%

Modeling Summary by Discharge

					l0 yr 24 hr storm	
Discharge	Average	Average	Average	Peak runoff	Peak seep flow	Total Peak
I.D.	runoff (gpm)	seep flow (gpm)	otal flow (gpm)	gpm	gpm	gpm
001	77.5	86.8	164.3	5462.0	1041.5	6503.5
002	88.1	72.7	160.8	6810.7	167.6	6978.3
005	41.6	67.1	108.8	3602.7	225.5	3828.2
006	13.4	192.4	205.8	1032.9	429.3	1462.2
007	31.1	97.4	128.5	3582.1	472.9	4055.0
014	14.0	2 <mark>6.6</mark>	40.6	1057.3	102.4	1159.7
021	22.7	68.4	91.0	1525.4	168.9	1694.3
031	22.6	77.7	100.3	1281.1	894.7	2175.8
034**					L. S.	-
036	19.3	23.6	42.9	719.6	239.5	959.2
				14	1	
Totals	330.3	712.7	1,043.0	25,073.9	3,742.4	28,816.3

** Discharges into 001, flow included in 001

40

Modeling Summary of Contributing Precipitation

Rainfall (2010)	Runoff	Seepage	Evapotrans.
Total inches	Inches (%)	Inches (%)	Inches (%)
45.87	10.10 (22%)	26.47(58%)	9.30 (20%)

Surface Runoff Pit Floor Total Average Gal/min./a cre 0.5 1.4 1.9

Modeling Summary of Contributing Precipitation

Rainfall (2010) - 45.37 inches

Average – 1.9 Gal/min./acre

Determining Design Se Concentrations

From 2010 DMR Data

I.D. $\mu g/l$ $\mu g/l$ $\mu g/l$ 0014.5911.1317.500028.3820.0334.900056.9710.4011.600062.105.9515.100076.2113.3420.500142.476.809.000219.6616.3432.900316.7215.9421.000343.829.5010.6003613.2520.4521.20	Discharge	Average Se Conc.	95th Percentile Se Conc.	Maximum. Se Conc.
001 4.59 11.13 17.50 002 8.38 20.03 34.90 005 6.97 10.40 11.60 $006 \leftarrow$ 2.10 5.95 15.10 007 6.21 13.34 20.50 $014 \leftarrow$ 2.47 6.80 9.00 021 9.66 16.34 32.90 031 6.72 15.94 21.00 034 3.82 9.50 10.60 036 13.25 20.45 21.20	I.D.	µg/l	µg/l	µg/l
002 8.38 20.03 34.90 005 6.97 10.40 11.60 006 2.10 5.95 15.10 007 6.21 13.34 20.50 014 2.47 6.80 9.00 021 9.66 16.34 32.90 031 6.72 15.94 21.00 034 3.82 9.50 10.60 036 13.25 20.45 21.20	001	4.59	11.13	17.50
005 6.97 10.40 11.60 $006 \leftarrow$ 2.10 5.95 15.10 007 6.21 13.34 20.50 $014 \leftarrow$ 2.47 6.80 9.00 021 9.66 16.34 32.90 031 6.72 15.94 21.00 034 3.82 9.50 10.60 036 13.25 20.45 21.20	002	8.38	20.03	34.90
$006 \leftarrow$ 2.105.9515.10 007 6.21 13.3420.50 $014 \leftarrow$ 2.47 6.80 9.00 021 9.6616.3432.90 031 6.72 15.9421.00 034 3.829.5010.60 036 13.2520.4521.20	005	6.97	10.40	11.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	006←	2.10	5.95	15.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	007	6.21	13.34	20.50
021 9.66 16.34 32.90 031 6.72 15.94 21.00 034 3.82 9.50 10.60 036 13.25 20.45 21.20	014←	2.47	6.80	9.00
031 6.72 15.94 21.00 034 3.82 9.50 10.60 036 13.25 20.45 21.20	021	9.66	16.34	32.90
0343.829.5010.6003613.2520.4521.20	031	6.72	15.94	21.00
036 13.25 20.45 21.20	034	3.82	9.50	10.60
	036	13.2 <mark>5</mark>	20.45	21.20

Treatment Design Basis

Basis-- 2010 rainfall Modeled (W. 10yr-24hr) and DMR Selenium Conc.

		Average	Average	Selenium (2010)
	Average Flow	Surface Runoff	Seepage Flow	Design Conc.
Discharge ID.	gpm	gpm	gpm	μg/l**
001	164.29	77.5	86.8	11.1
002	160.82	88.1	72.7	20
005	108.79	41.6	67.1	10.4
007	128.48	31.1	97.4	13.3
021	91.03	22.7	68.4	16.3
031	100.31	22.6	77.7	15.9
036	42.88	19.3	23.6	20.5
Totals	796.59	302.88	493.71	
Weight Average				14.88

Coal

Arch

**** 95 th Perentile Se concentrations**

Arch-Eastern, Birch Mine

>In March of 2011 a Consent Decree was entered by WVDEP requiring corrective action to comply with Selenium standard at 10 discharge points on the Knight Ink surface mine.

>A corrective action plan developed by Arch and CRA to establish the following:

- ✓•
 - Determine applicability of new and existing selenium treatment technologies
 - Complete alternatives analysis of selenium treatment system options.
 - Select Treatment Alternative
 - Design and construct system
 - Initial compliance by August 2012

Alternative Treatment Analysis New and Existing Technologies

Treatment Design Considerations, Centralized vs. Independent

- Property access, permitting time requirements and jurisdictional wetlands immediately downstream of discharges, dictated that a <u>centralized treatment approach</u> be employed.
- Centralized Collection and Transfer System
 - Water level in ponds will be kept low via level controlled pump.
 - Pumps will deliver water to a centralized location for treatment
- Benefits of Centralized Collection and Treatment
 - Flow equalization is achieved in existing ponds
 - Treatment system can be constructed in most favorable location
 - Combining of flow allows for a lower Se. design concentration i.e., 95th percentile vs. max concentration

Centralized Collection and Transfer System

Centralized Collection and Transfer System (20,000 ft. Pipeline Transfer System)

& ASSOCIATES

Centralized Collection and Transfer System

- Key System Details
 - 2200 GPM pumping capacity via seven pumps
 - Surface Runoff Selenium concentrations found to be low, during precipitation events
 - Pump capacity nearly three times avg. flow, equivalent to 9.7 acre-ft./day
 - Level Controlled Automatic pump operation
 - 60 acre feet of storm water storage and flow equalization volume
 - System Owning and Operating cost is estimated at \$0.48/1000 Gallons 10 yr. period, 8% NPV

Selenium Treatment Alternatives Evaluation

- Completed Bench Scale Testing of the Following Technologies
 - Electro-Coagulation
 - Adsorbent Media
 - Iron Co-Precipitation
- Completed Pilot or Demonstration Scale Testing of the Following Technologies
 - Phyto -Remediation
 - Bio-Augmentation -in-situ pond treatment
 - Zero-Valent Iron Treatment
 - Ion-Exchange
 - Biological Reactor (Anaerobic Wetland) Treatment
 - With and Without Bio-Augmentation

Selenium Treatment Alternatives Evaluation

Bench Scale Results

- Electro-Coagulation- Bench scale tests had favorable results, equipment issues prevented further investigation of the technology
- Adsorbent Media- *Removal rates were insufficient to warrant further evaluation*
- Iron Co-Precipitation- Iron addition requirements were very high, did not move to pilot testing of the technology

Pilot Scale Results

- Phyto -Remediation Some removal during active growing season, not effective for higher Se loading
- Bio-Augmentation (in pond) –Effective during low load, summer months, Not effective during winter months
- Zero-Valent Iron Treatment- Effective Selenium Removal, High Iron generation
- Ion-Exchange-Effective Selenium Removal, Large Brine disposal requirement
- Biological Reactor (Anaerobic Wetland) Treatment-Effective Selenium removal, No Apparent Issues.

Results of Focused Feasibility of Selected Technologies

Treatment Technology	Estimated O&O Cost \$/1000 Gal. 10yr	Pro's	Con's
Semi-Passive Biological Reactor	\$0.38	Low Maintenance, No Residual Material Handling Issues, Self Sustaining, Low Cost Operation Have installed simular systems that have shown long term success	Large footprint required, initial startup equilibrium period, Reaction to higher Se concentration is time consuming
Ion Exchange	\$3.90	Small Footprint required, Reaction period for higher Se Concentrations short.	Labor intensive, Residual Brine handling issue, Active mechanical maintenance issues. High Cost Operation, Treatment materials require storage, spill control
Zero Valent Iron	\$3.00-\$5.00	Small Footprint required, Reaction period for higher Se Concentrations short.	Labor intensive, Residual Iron handling issue, Active mechanical maintenance issues. High Cost Operation, Treatment materials require storage, spill control Iron sludge handling and cost
CONESTOGA-ROVER	25		

& ASSOCIATES

ø

Determination of Treatment

- In November, 2011 ARCH-Eastern Indicated to WVDEP that Centralized Collection & Transfer and Biological Reactor Treatment Would be Implemented in Accordance with the Site Consent Decree
 - Final sizing of the biological treatment system would occur after winter operation of the demonstration project.
 - Construction of the collection and transfer system would occur beginning in December 2011 (and it has)

Chemistry of Selenium Treatment

Chemistry of Selenium Treatment

- Most Treatment Strategies (except Ion exchange & Reverse Osmosis) Reduce Selenate (+6) to Selenite (+4) Elemental (0) or Selenide (-2) form.
- Reducing Condition can be created either chemically or biologically.
- Chemically by a reducing agent (e.g., -ZVI), biologically through decomposing organic matter and/or microbial respiration processes

Chemistry of Selenium Treatment in Bio-Reactor

- ♦ 4CH3C0-+3SeO2 \rightarrow Se^o+8CO2+4H20+4H+
- Selenium (Selenate/Selenite) is reduced to its elemental state, where it precipitates out of solution and remains in the bio-reactor substrate.
- Key Factors to Removal
 - Form of Selenium, Arch-Eastern waters are > 95% Selenate
 - Eh (oxidation/Reduction) potential of the system
 - Affected by Temperature, Biological Activity, Flow Rate
 - Hydraulic Retention Time (detention time in the system)
 - Affected by Theoretical HRT (volume of the Bio-Reactor)
 - Affected by Actual HRT (Flow patterns within the system).

Chemistry of Selenium Treatment in Bio-Reactor

- Key Components of Bio-reactor Design
 - Gravel Sub-Drain- Acts as a Biological Media and Principle Flow Path.
 - Hay Substrate- Acts as a Biological Media and Carbon Source for microbial activity. Reduces Eh of the System through decomposition
 - Mushroom Compost- Serves as a source of Nutrients to Microbes. Serves as growth media for cattails.
 - Cattails- Provides cover. Dying cattails replaces decomposing hay.
 - Microbes- Consumes available Oxygen, creates reducing conditions. (Some forms consume Oxygen associated with Selenate and Selenite ions)

Bio-reactor Demonstration Project

Demonstration Bioreactor, Construction

Bioreactor Demonstration Project-Key Features

- Lined System
- Fixed Bed-Plug Flow Biological Reactor
- Horizontal and Downward Flow
- Volume and Theoretical Hydraulic Retention Time (HRT) measured upon initial filling of the system
- Pumped, Measured inflow to the system
- Ability to increase Se concentrations to the influent
- Weekly analysis of daily composite samples
- Daily field reading of flow, pH, eH, Temp. and DO
- Continual operation from Mid-August thru February

Demonstration Bio-reactor Results

Arch-Eastern, Bioreactor #1

Arch-Eastern, Bioreactor #1 Demonstration Project

Arch-Eastern, Bioreactor #1

Arch-Eastern, Bioreactor #1

Arch-Eastern, Bio-reactor #1

Arch-Eastern, Bio-Reactor #1

Full Scale Implementation

- Full Scale Design Criteria (Established earlier in the project).
 - Flow 800 gpm
 - 95th Percentile Se concentration- 14.88
 - Effluent Concentration -2.35 µg/l (1/2 discharge criteria)
 - Yields a required Se removal of 54635 mg Se/day
- Selenium removal rates of bio-reactor treatment established during demonstration testing
 - 0.22 mg/day/ft³
- Full Scale Bio-Reactor Size
 - 54635 mg/day / .22 mg/day/ft³ = $248,340 \text{ ft}^3$

Arch-Eastern, Full Scale Bio-Reactor

Se Removal, mg/day/cub.ft

Quality Predictive Tool

- The linear equation developed during the demonstration projects allows us to model expected effluent concentrations at various incoming loads
 - Incoming Concentration 14.88 μ g/l (95th percentile) at 800 gpm = effluent concentration of 2.35 μ g/l
 - Incoming Concentration 7.24 μ g/l (average conc.) at 800 gpm = effluent concentration of 1.5 μ g/l
 - Incoming Concentration 19.7 μg/l at 800 gpm= effluent concentration of 3.7 μg/l
 - Incoming Concentration 7.24 $\mu g/l$ (average conc.) at 1150* gpm effluent concentration of 1.45 $\mu g/l$
 - * HRT at 10 hr.

Full scale Bio-reactor Design, Plan View

Full scale Bio-reactor Design, Inlet section

Full scale Bio-reactor Design

Conclusions, Completed Objectives

- Establish design criteria for treatment of waters associated with discharge points identified in the Consent Decree- <u>800 GPM, 14.88</u> <u>µg/l</u>
- Determine applicability of new and existing selenium treatment technologies – <u>Bench and/or Pilot testing of 8 technologies</u>
- Complete alternatives analysis of selenium treatment system
 options. -*Three Technologies Analyzed*
- Select Treatment Alternative- <u>Collection and Transfer to Central</u> <u>Bio-reactor Treatment</u>
- Design and construct system- <u>Design Completed, Construction</u> <u>underway</u>
- Initial compliance by August 2012

