THE POWER WITHIN

Terry Potter
Engineering Manager,
Coal Mac, Inc.

John McDaniel

Director Engineering and Technical Services Arch Eastern Operations, Arch Coal Inc.

Coal Mac, Inc.

Subsidiary of Arch Coal, Inc. Employees - 299
Annual sales - 3 MM tons

Excavator/Loader mine

BROOKE

Pine Creek 1

Logan County, WV
Pine Creek of Island Creek

Mining area – 537.10 ac. Valley fill area – 206.20 ac.

WV Article 3 & Article 11 Submitted - 04/06/2006 Approved - 09/05/2008

EPA Review Timeline

- January, 2009 EPA commences extra regulatory review process of CWA Section 404 permits.
- June 11, 2009 Enhanced Coordination Procedure (ECP) The EPA, the Corps, and the Department of the Interior releases a Memorandum of Understanding (MOU) specifying the use of the Multi-criteria Integrated Resource Assessment (MIRA) process to expedite permit process
- September 11, 2009 Initial list 79 pending permit applications released. All failed to pass MIRA.
- January 13, 2010 Initial ECP Review
- April 1, 2010 EPA Issues Comprehensive Guidance which includes requirement of maximum benchmark conductivity of 500 microSiemens per centimeter.

USACE approval - 07/27/2010

- Only valley fill 1 approved
- Future fills contingent on meeting benchmark conductivity of 500 microsiemens/cm downstream of Fill 1.
- Additional mitigation (Creation/restoration)
- Several watersheds permanently set aside
- Special valley fill construction techniques

Special valley fill construction specs

- Special handling plan using inert sandstone for underdrain
- Internal checks
- Underdrain wrapped with filter fabric
- Limited brushing (5th bench level)
- Compaction and Internal drain on 5th bench level
- Compaction and Internal drain on Coalburg seam level

Inert sandstone for underdrain

 Most inert underdrain material located between the Lower Stockton seam and the Coalburg rider.

Internal check

Internal checks

Filter fabric placement

 Placement of the fabric wrap for the under drain was labor intensive and time consuming.

Underdrain placement

•Additional views of the underdrain placement over the filter fabric.

Limited Brushing

Toe of fill

Limited Brushing

VF1 - Conductivity Results

Success?

Conductivity Comparison

Outlet No.	Avg Cond (umhos)	Min Cond (umhos)	Max Cond (umhos)	
BF 1 & 2	120	43	247	
Fill 3	538	277	802	
Fill 4	939	299	1,215	

FILL 4

Fill 3 – 538 umhos avg.

Fill 4 – 939 umhos avg.

Flow Diagram – Left Fork of Pine Creek

Contribution Watershed Area2,931acres

• Preserved Area 74.1acres

Number of Fills in the Watershed

Flow x Conductivity

Calculations based upon U.S.G.S. equation where:

 \overline{C} CMDLFPC – $(\overline{C}$ CMILF + \overline{C} BF1&2 + \overline{C} DSF3) = \overline{C} Remaining Watershed

where $\overline{C}n$ is the average of the product of Flow x Conductivity for the data set:

Before Permit Issuance

	Flow (cfs) x Conductivity	Average Conductivity	<u>Flow</u>
<u>Station</u>	(umhos)	(umhos)	<u>(cfs)</u>
CMDLFPC	1537	440	3.61
CMILF	522	496	1.2
BF 1 & 2	187	307	0.76
DSF3	88	299	0.32
ALL OTHERS	740	556	1.33

After Permit Issuance

	Flow (cfs) x Conductivity	Average Conductivity	<u>Flow</u>
<u>Station</u>	(umhos)	(umhos)	<u>(cfs)</u>
CMILF	999	642	1.83
CMDLFPC	3995	395	10.47
BF 1 & 2	99	109	0.82
DSF3	4.24	12	0.13
ALL OTHERS	2805	364	7.69

Post Mining Compared to Pre Mining

	Flow (cfs) x Conductivity	ow (cfs) x Conductivity Average Conductivity	
Station	(umhos)	(umhos)	(cfs)
CMDLFPC	2458	(45)	6.86
CMILF	477	146	0.63
BF 1 & 2	(88)	(198)	0.06
DSF3	(84)	(287)	(0.19)
ALL OTHERS	2065	(192)	6.36

Comparison of WVSCI Scores to Conductivity Levels

					Difference Post Mining	
	Before	Average	After	Average	to Pre Mining	
	Permit	Conductivity	Permit	Conductivity		Conductivity
Station	WVSCI	(umhos)	WVSCI	(umhos)	WVSCI	(umhos)
CMDLFPC	76.36	440	68.36	395	(8.00)	(45)
CMILF	86.53	496	63.96	642	(22.57)	146
BF1&2	NA	307	85.19	109	NA	(198)
DSF3	NA	299	68.12	12	NA	(287)
NA - Both locations were dry during sampling event						

THANK YOU

Questions

