Services and Technologies

BioRemedial Technologies, Incorporated Hermitage, Pennsylvania

724-981-1994 www.bioremedial.com

BioRemedial Technologies, Inc. "Biological Solutions for Environmental Problems"

- Founded in 1993
- Fully equipped microbiological laboratory with analytical capabilities
- Well Rounded Staff with Ph.D. Microbiologists, Professional Geologist and Environmental Scientists

Office and Laboratories

Hermitage, Pennsylvania

(~50-miles north of Pittsburgh)

Company Overview

- Soil and groundwater remediation
 - Aerobic and Anaerobic Processes
 - Selenium and other metals
 - Acid Mine Drainage (AMD)
 - Petroleum Hydrocarbons (oils, gasoline/diesel, MTBE)
 - Chlorinated Solvents (PCE, trichloroethylene)
 - Polyaromatic Hydrocarbons (PAHs)
 - Lagoon Sludge

Bioremediation

- The use of amendments to enhance growth and activities of *intrinsic beneficial bacteria* to perform a desired process
- The indigenous microbes used by BRT are harvested from a given site and are 100% site specific
- Key is to focus on Beneficial Bacteria

Beneficial Bacteria

- Heterotrophic Bacteria
 - Over a million organisms on the head of a pin,
 - Not all carry out the desired process
- Beneficial bacteria acclimate to new site conditions
 - Out compete foreign organisms enhance the activity of the of the beneficial
 - Palm tree in West Virginia?
- Harvest and enhance the power of mother nature
 - Site specific approach; Bacteria, Nutrients and Carbon Source

Site Specific Approach Bacteria

- Bacteria
 - Indentify beneficial bacteria
 - In some instances, desired bacteria degrade contaminant, producing carbon dioxide while others reduce contaminant to an alternative electron state to precipitate out of solution
 - Determine what is needed for the given site
 - Harvested from intrinsic beneficial bacteria grown en masse then re-inject (biological seeding)

Site Specific Approach Nutrients

- Biological testing performed with in-house lab to monitor nutrient needs, loading and consumption
- Site Specific formula
- 13 different compounds for optimal efficiency
 - nitrate and phosphate
 - cofactors for enzyme reactions, growth stimulants, metabolic enhancers
 - water soluble
 - slow released
 - facilitates faster, better and stronger contaminant degrading microorganisms
- Introduced to site below EPA drinking water standards

Site Specific Approach Carbon Source

- Carbon Source
 - BRT's proprietary blend targets the intrinsic beneficial bacteria and make for more efficient biological activity
 - Without enough carbon source, conversion will stall. Too much and precious time and money will be wasted. Need to find the correct balance.
 - Different bacteria require different carbon sources

Field Application

- Indentify contaminant of concern and determine what bacteria to analyze
 - Selenium Selenium reducers
 - AMD and metals Sulfate Reducing Bacteria (SRB)
- Site Characteristics
 - Flow (gpm), concentrations, lagoon/outfall size
- Sample of media (soil or water)

Acid Mine Drainage (AMD)

AMD Origin

- Chemical Process
 - Oxidation of pyrite and other sulfide minerals results in groundwater that has high concentrations of sulfate, ferrous iron and other metals.
 - Ferrous iron in groundwater then oxidize to create ferric iron
 - Precipitation of these ferric irons produce acidic conditions
- Oxidation of Pyrite

- $FeS_2 + 7/2 O_2 + H_2O -> Fe^{2+} + 2SO_4^{2-} + 2H^+$

Oxidation of ferrous iron to ferric irons
Fe²⁺ + 1/4O₂ + 5/2 H₂O -> Fe(OH)₃ + 2H⁺

Acid Mine Drainage

BRT's Approach

- Biological solution for chemical reaction
 - Sulfate reducing bacteria (SRB)
 - SRB's use organic compounds as carbon and energy sources and sulfate as an electron acceptor for respiration (breathing)
 - Byproducts of this respiration is hydrogen sulfide and alkalinity
 - Hydrogen sulfide precipitates metals out of water in the form of metal sulfides
- SRB's production of hydrogen sulfide and alkalinity
 - $SO_4^{2-} + 2(CH_2O)_n \rightarrow H_2S + 2HCO_3^{-}$
- Metal Precipitation

 $- Me^{2+} + HS^{-} -> MeS + H^{+}$

Acid Mine Drainage

BRT's Approach

- Promote and maintain SRB activity
 - Addition of organic compounds (carbon and energy source)
 - Addition of site specific nutrients (enhanced bacterial activity)
 - This will lead to increase of SRB's in situ
- Biological bench scale studies performed in-house to determine viability of technology.

Bioremediation of Selenium

- Selenate and selenite are oxidized forms of selenium that stay in solution and carried in discharge waters
- Through biological activities, certain natural occuring beneficial bacteria have the potential to respire selenate and selenite
- Respiration of selenate and selenite produces insoluble elemental selenium which drops out of solution enabling compliance with discharge limits

• Culture being prepared for delivery

Site Specific Approach

• All activities are site specific. Design and formulation of all materials are done in BRT's in-house lab and production facility

Site Specific Approach

- No power or infrastructure needed
- No sludge generated

Project Overview

Selenium Concentrations Over Time

Questions?

Contact info Tyler Perry – tperry@bioremedial.com Matthew Perry – mperry@bioremedial.com

> 724-981-1994 www.bioremedial.com