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ABSTRACT 

A number of state and federal agencies are calling for 
development of aquatic life criteria for conductivity. These aquatic life 
criteria or “benchmarks” are based on observed correlations between 
conductivity and benthic macroinvertebrate community composition, 
generally measured by composite metrics or indices.  However, 
development of an aquatic life criterion for a composite variable like 
conductivity is made difficult by a number of factors.  Based on a 
database from West Virginia, observed patterns of invertebrate 
community composition versus conductivity may instead be related to 
a combination of abiotic (e.g., ionic composition, habitat) and biotic 
(e.g., life history, colonization potential) factors.  Many benthic 
invertebrate taxa also do not respond to increasing conductivity in a 
consistent relationship.  Many states have determined that a composite 
variable, like conductivity or TDS, is not appropriate for criteria 
development, as many studies have shown that toxicity varies as a 
function of ion composition and can be mitigated by elevated hardness.  
We conclude that the relationships between conductivity and changes 
in benthic macroinvertebrate community composition are neither strong 
nor reliable enough to warrant derivation of a criterion based solely on 
conductivity. 

INTRODUCTION 

It has been recently proposed that coal mining and valley fill 
(CM/VF) activities in West Virginia lead to increases in the conductivity 
of surface waters located immediately downstream of activities, and 
that these increases in conductivity are related to adverse changes in 
the structure of benthic macroinvertebrate communities (Pond et al. 
2008).  In particular, reduced abundances of mayflies (represented by 
the aquatic insect order Ephemeroptera) were considered to be most 
closely related to elevated water conductivity.  The relationships 
identified in Pond et al. (2008) were based purely on statistical 
correlations between water quality characteristics and benthic 
macroinvertebrate community structure and do not represent a formal 
or mechanistic test of the hypothesis that conductivity (or the chemical 
parameters detected by the composite measure of conductivity) is the 
primary cause of changes in the macroinvertebrate communities 
downstream of CM/VF activities. 

The U.S. Environmental Protection Agency (EPA) is now 
proposing that the correlation between conductivity and benthic 
macroinvertebrate community structure is strong enough that an 
aquatic life “benchmark” can be derived.  In a detailed guidance 
memorandum dated April 1, 2010, EPA provides guidance on the 
interpretation of narrative Water Quality Criteria for conductivity stating 
that “predicted conductivity levels below 300 µS/cm generally will not 
cause a water quality standard violation and that in-stream conductivity 
levels above 500 µS/cm are likely to be associated with . . . 
exceedances of the narrative state water quality standards” (EPA 
2010).  The specific benchmarks referenced therein are based on a 
draft report currently under review and thus are subject to change.   

Given these potential regulatory implications of the April EPA 
memorandum, the biological plausibility of using conductivity as the 

basis for deriving an aquatic life benchmark must be carefully reviewed 
to determine whether it represents a scientifically reliable means of 
ensuring aquatic life protection.  Correspondingly, as part of a larger 
evaluation of this issue (GEI 2010; 
http://www.nma.org/pdf/legal/092110_gei.pdf), we conducted an 
independent statistical evaluation of the ecological factors most likely 
associated with observed variation in benthic macroinvertebrate 
community structure in West Virginia headwater streams, including 
streams associated with CM/VF activities. 

METHODS 

Pond et al. (2008) and EPA (2010) appear to presuppose that 
conductivity is the best predictor that is both functionally and causally 
related to the response of macroinvertebrate communities in Central 
Appalachian streams, while disregarding many other factors that may 
influence community composition.  The West Virginia Department of 
Environmental Protection (WVDEP) Watershed Assessment Branch 
Database (WABbase - 
http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=496202) 
provides an opportunity to examine other possible factors that may 
contribute to shaping macroinvertebrate community structure.  This 
dataset includes results for 3,286 sampling events representing 3,121 
unique Station ID codes and contains a variety of variables that present 
site-specific information regarding regional landscape, water quality, 
and aquatic habitat conditions as well as macroinvertebrate community 
composition.  Using this dataset, we conducted an independent 
analysis that considers all of the available information and strives to 
objectively identify key water quality and physical parameters that are 
most strongly associated with biotic responses. 

This analysis was based on an integrated approach to identify 
environmental factors that best describe the observed variability 
between stream sampling sites that strongly correlate with each other, 
rather than trying to establish causal relationships.  In the absence of a 
rigorous study design conducted under controlled experimental 
conditions, it is more important to identify data relationships rather than 
attempt to establish cause-effect relationships. 

Our approach involved a series of statistical analyses that 
reduced the total number of parameters to a more ecologically 
meaningful subset of variables with respect to the available data.  The 
original dataset was initially subdivided into independent stressor and 
dependent response variables.  Independent stressor variables in a 
stream ecosystem include chemical and physical habitat variables, 
such as metal and ion concentrations in the water column and 
substrate particle-size composition (Paulson et al. 2001).  Dependent 
response variables were selected to represent the biological 
components of the stream, with a focus on macroinvertebrate density 
or taxa richness.  The independent stressor variables generally 
represent a mix of both quantitative (e.g., major ion or metal 
concentrations) and qualitative (e.g., embeddedness) variables, as well 
as composite habitat and water quality variables (e.g., Rapid 
Bioassessment Protocol [RBP] score, conductivity).  Thus, 
understanding the general categories of each variable also helped 
reduce the overall list of variables. 

http://www.nma.org/pdf/legal/092110_gei.pdf
http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=496202
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The integrated analysis followed a series of statistical procedures 
(Paulson et al. 2001), as presented below, to identify key variables that 
could be used to characterize relationships between water quality, 
aquatic habitat, and macroinvertebrate communities. As shown in the 
step-by-step sequential analysis outlined below, this series of analyses 
is a strongly iterative process.  In other words, as results of various 
tests are evaluated, decisions with respect to which variables are most 
statistically significant and or ecologically important may be adjusted, 
requiring the process to be repeated. Thus, this analytical process 
attempts to be as objective as possible, but some professional 
judgment is applied to ensure a meaningful outcome. 

1. Apply basic statistics 
a. Generate descriptive summary statistics and data plots 
b. Normalize data as needed to meet statistical 

assumptions 
c. Compile correlation matrices 

2. Identify key stressor and response variables using the 
following methods (described in detail below): 
a. Principle Components Analysis (PCA) 
b. All Possible Regressions (APR) 
c. Chi-square Automatic Interaction Detection (CHAID) 

3. Rank variables according to relative influence 
a. Develop matrix of key independent stressor variables 

and relationships found in Step 2 
b. Repeat Steps 2 and 3 until the two most influential 

independent stressor variables are identified for each 
dependent response variable 

4. Fit equation to describe interactions between stressor and 
response variables 
a. Use three-dimensional modeling program to identify 

non-linear relationships, and the extent to which these 
relationships are statistically significant 

Using the dataset, basic statistical procedures (e.g., Spearman 
rank correlation, scatter and box plots) were used to summarize each 
of the independent stressor and dependent response variables, as well 
as evaluating general relationships between the two variable types.  All 
variables were evaluated for approximation of a normal distribution 
using Shapiro-Wilkes normality tests and Q-Q probability plots.  When 
appropriate, variables were transformed and re-evaluated for fit with an 
expected normal distribution.  A logarithm base10 transformation (log) 
was used for water quality variables and macroinvertebrate density, 
while the arcsine-square root transformation was used for variables 
reported as percentages (e.g., percent fines and percent 
Ephemeroptera).  The water quality variables—temperature and pH, as 
well as the physical habitat and macroinvertebrate variables such as 
embeddedness and genera-based metrics—did not require 
transformation.  Two macroinvertebrate metrics (number of Trichoptera 
taxa and percent Trichoptera) were not included in the database, so 
were calculated based on subtraction of reported Ephemeroptera and 
Plecoptera metrics from summary Ephemeroptera, Plecoptera, 
Tricoptera (EPT) results that were provided in the dataset. 

Using the basic summary statistics (e.g., frequency distributions, 
correlation analyses), as well as professional judgment, the entire list 
of variables was initially reduced to a smaller subset of variables that 
we believed to be the most ecologically relevant when evaluating 
factors that explained the variability observed between sites, in terms 
of  macroinvertebrate communities in Central Appalachian streams 
(Table 1). 

It is important to note that composite type variables are often not 
very useful when evaluating biological responses to environmental 
stressors.  For example, the total RBP score for aquatic habitat 
evaluation may appear to strongly correlate with select biotic 
responses, yet this index provides little insight into the specific 
environmental characteristics that may be influencing biotic 
communities because it is comprised of many metrics.  To the extent 
possible, we have excluded such composite independent stressor 
variables in our data analyses, including conductivity and hardness, 
because they provide little information above and beyond their 
component variables when trying to isolate water quality factors that 
may be most strongly associated with a biotic response. This is 

particularly important for conductivity, because biological responses 
are well known to result from exposure to individual ions, rather than 
composite descriptors of ionic strength such as conductivity or total 
dissolved solids concentrations (Mount et al. 1997). 

Table 1.  Refined list of independent stressor and dependent response 
variables used in the integrated analysis. 

Independent Stressor Variables Dependent Response 
Variables 

Water Quality Physical Habitat Macroinvertebrate 
Temperature Bank stabilization Clinger taxa, genera 
Dissolved oxygen Bank vegetation Ephemeroptera, genera 

Alkalinity 
Undisturbed 
vegetation 

EPT, genera 

pH Channel alteration HBI, genera 
Chloride Channel flow Intolerant taxa, genera 
Sulfate Riffle sinuosity Plecoptera taxa, genera 
Total aluminum Embeddedness Trichoptera taxa, genera* 

Total calcium 
Sediment 
deposition 

Total taxa, genera 

Total iron 
Epifaunal 
substrate 

Density 

Total magnesium Velocity of pool Percent Chironomidae 
Total manganese Percent fines Percent Ephemeroptera 
Total suspended 
solids 

Percent sand 
Percent Ephemeroptera minus 
Baetidae 

Total phosphorus Percent silt Percent EPT 
Nitrate – Nitrite 
nitrogen 

Percent EPT minus 
Cheumatopsyche 

Fecal coliforms 
Percent EPT minus 
Cheumatopsyche and Baetidae
Percent Hydropsyche 
Percent Orthocladiinae 
Percent Plecoptera 
Percent Trichoptera* 
Percent Simuliidae 

 

 

Percent dominant 5 taxa, 
genera 

* Calculated metric. 

Principal Component Analysis 
Principle Component Analysis (PCA) is a variable reduction 

procedure that helps identify redundancy among numerous variables, 
and is used to identify whether groups of observed variables tend to 
“move together” (i.e., were positively or negatively correlated with one 
another)  or not (Johnson and Wichern, 1992).  PCA also helps identify 
variables that best explain the variability observed between sites and 
how those variables relate to one another, as well as whether one 
variable could be used as a surrogate for other variables within each 
grouping (i.e., water quality, physical habitat, macroinvertebrate).  When 
such variables are replaced with a surrogate which explains the same 
amount of variation, the power of the statistic to identify relationships is 
maximized (Paulson et al. 2001). 

An iterative process was used for the PCA analyses, such that all 
variables from each grouping were loaded into separate PCA models.  
This initially created three distinct groupings, two for stressor variable 
groupings (i.e., water quality and physical habitat) and one for the 
response variable group (i.e., macroinvertebrates).  The PCA extraction 
method was based on a correlation matrix with a varimax rotated 
solution, pairwise deletion of missing values, and extracted eigenvalues1 
greater than 1.0.  The rotated component matrix2 for each variable 
grouping was examined, with variables exhibiting coefficients greater 

                                                            
1 An eigenvalue is a measure of the strength of a principal component 
axis, the amount of variation along the axis, and, ideally, the 
importance of an ecological gradient. 
2 A rotated component matrix is one showing the results of varimax 
orthogonal rotation that minimizes the number of heavily weighted 
variables on each principal component. 
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than 0.6 considered a significant part of the component.  If the 
component contained multiple significant variables, the Spearman rank 
correlation values for those variables were also evaluated.  If variables 
were highly correlated (i.e., > 0.6 or < -0.6) with each other, the variable 
with the largest component coefficient (i.e., most heavily weighted) was 
selected.  Up to five components were examined with the most heavily 
weighted or unique variables (either positive or negative) being selected 
for inclusion in a subsequent PCA model. 

All Possible Regressions 
All Possible Regressions (APR) is another iterative method that 

combines one dependent response variable with many independent 
stressor variables, using all possible combinations of the stressor 
variables to maximize the variance explained in the response variable.  
This data exploration approach identifies the best single variable or 
subset of variables that explains the most variation observed in the 
biological response variable.  The goal of APR analysis is to identify 
the smallest subset of variables that explains most of the variation, 
rather than to provide an actual predictive equation for the subset of 
variables. 

For this analysis, the total taxa and percent EPT variables were 
selected as the biological response variables, as identified in the PCA 
analysis (see below).  All of the independent stressor variables 
identified in Table 1 were initially included in each of the water quality 
and physical habitat APR models.  Similar to the PCA approach, the 
water quality variables and physical habitat variables were first 
analyzed independently then combined in an overall APR model for 
each biological response variable.  The R-squared (R2) and root mean 
square error (RMSE) for each APR model were reviewed to identify a 
model with the largest R2 and smallest RMSE, while minimizing the 
variable count. 

Chi-square Automatic Interaction Detection 
Chi-square Automatic Interaction Detection (CHAID) is a 

nonparametric exploratory model used to evaluate contingent 
relationships between a dependent variable and a series of independent 
stressor variables, including non-linear relationships (Paulson et al. 
2001).  CHAID selects a subset of stressor variables that best predicts 
the dependent variable, and presents these variables in a decision tree.  
The decision tree starts with the dependent variable and progressively 
splits into smaller branches (nodes) based on groupings of the stressor 
variables that best predict responses by the dependent variable.  CHAID 
is a sequential fitting algorithm similar to a forward stepwise model, 
although the decision to split or combine independent variables is 
dependent or contingent upon earlier effects, rather than simultaneously 
as in regression analysis.  Both the dependent and independent 
variables were raw untransformed values treated as interval scale 
variables, rather than nominal or ordinal variables. 

Similar to the PCA and APR analyses, an iterative process was 
used to evaluate both water quality and physical habitat variables 
independently, and then select a subset of variables from each 
analysis to be combined in a final decision tree for each dependent 
variable.  Individual CHAID models were developed for total taxa and 
percent EPT, which included all of the water quality or physical habitat 
parameters listed in Table 1.  Thus, four separate CHAID decision 
trees were created: two for total taxa (water quality and physical 
habitat tree) and two for percent EPT (water quality and physical 
habitat tree).  Each decision tree was evaluated and the most 
important independent stressor variables were selected from each 
analysis.  The independent stressor variables listed for each 
dependent variable were included in a combined CHAID model to 
evaluate the relationships between both types of stressor variables and 
the biological response variable. 

RESULTS 

Principal Component Analysis – Water Quality 
The goal of the PCA analysis was to understand whether the water 

quality variables “moved together” (i.e., were positively or negatively 
correlated with one another) and to select variables that may be a 
surrogate for other variables.  For the first iteration of our PCA model, the 
first component included the log transformed variables for total 

magnesium, sulfate, and total calcium as weighted the most heavily.  
This weighting and movement (all positive) of the variables along the first 
component was to be expected, based on the chemical relationship 
between all of these variables and their Spearman Rank correlation 
values.  In the second component, the log transformed variables for total 
iron, total aluminum, and manganese were weighted the most heavily, 
with all variables showing positive movement with each other.  In the 
third component, fecal coliforms, pH, and alkalinity revealed the 
strongest weighting coefficients.  Temperature and dissolved oxygen 
were key variables in the fourth component, and moved in opposite 
directions as is to be expected, while the nutrients total phosphorus and 
nitrate-nitrite were the most heavily weighted variables in the fifth 
component.   

The selected variables within the first five components accounted 
for a total of 72% of the variation observed among sample sites with 
respect to the water quality variables contained within the WVDEP 
dataset.  In contrast, parameters such as calcium, sulfate, and 
magnesium, along with parameters that characterize overall ionic 
strength explained approximately 38% of the variation among sample 
sites with respect to water quality. 

The following variables were selected to be surrogates for other 
less heavily weighted variables in each component and were included 
in subsequent PCA analyses: 

1. total magnesium  
2. total iron 
3. pH 
4. fecal coliforms 
5. dissolved oxygen 
6. total phosphorus 
7. total suspended solids (TSS) 

TSS was selected even though it did not initially meet our original 
selection criteria.  Based on its relatively moderate weighting in two of 
the five components, as well as its relationship to geological and 
hydrological underpinnings within the watersheds, we believed this to 
be an important variable that may influence macroinvertebrate 
communities. 

The seven selected water quality variables were subsequently 
loaded into a second PCA model, with the same evaluative process 
being performed on the rotated component matrix.  The rotated 
component matrix converged in the first two components, with the first 
component comprised of the log transformed variables for total 
magnesium (0.800), pH (0.692), and fecal coliform (0.638).  In the 
second component, the log transformed variables for total iron (0.698) 
and dissolved oxygen (0.661) weighted the most heavily, while total 
suspended solids (0.780) and total phosphorus (0.743) were considered 
part of the third component. 

The final water quality variables that were selected to be included 
in the overall PCA model evaluating relationships between water 
quality, habitat, and macroinvertebrate variables were: 

1. total magnesium—also surrogate for Ca, SO4, pH 
2. fecal coliforms 
3. total iron—also surrogate for Al and Mn 
4. dissolved oxygen—also surrogate for temperature, and 
5. total suspended solids—also surrogate for total phosphorus 

Principal Component Analysis – Physical Habitat 
The iterative PCA process described above was also performed 

using the independent physical habitat stressor variables.  The initial PCA 
model using physical habitat characteristics extracted four components, 
with the first component being comprised of sediment deposition (0.832), 
embeddedness (0.735), riffle sinuosity (0.675), and epifaunal substrate 
(0.643), all of which exemplify substrate quality in these watersheds.  The 
second component included undisturbed vegetation (0.855), bank 
vegetation (0.833), and channel alteration (0.755), which are characteristic 
of riparian habitat.  The third component included the arcsine-square root 
transformation for percent fines (0.950), percent sand (0.844), and percent 
silt (0.678), which again characterize substrate composition.  The fourth 
component only included channel flow, which had a weighting coefficient 
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of 0.810.  These four components accounted for a total of 66% of the 
variation observed among sample sites with respect to physical habitat 
conditions.  The first component accounted for approximately 20% of the 
variation in physical habitat observed among sample sites. 

From our initial analysis, we selected the following physical 
habitat variables to be included in a subsequent PCA analysis: 

1. sediment deposition 
2. undisturbed vegetation 
3. percent fines, and 
4. channel flow 

The second physical habitat PCA extracted two components with 
sediment deposition (0.795) and percent fines (-0.769) weighted 
heavily and in opposite directions in the first component, even though 
they are not strongly correlated (Spearman, -0.376).  Channel flow 
(0.909) weighted heavily in the second component.  All three variables 
were selected to be included in the overall PCA model evaluating 
relationships between water quality, habitat, and macroinvertebrate 
variables. 

Principal Component Analysis – Macroinvertebrates 
The initial macroinvertebrate PCA model resulted in four 

components being extracted, with the first component comprised of the 
arcsine-square root transformations for the percent EPT variable and its 
derivatives, along with percent Ephemeroptera and its derivatives, 
percent Chironomidae, and the genera-based Hilsenhoff Biotic Index 
(HBI).  Even though the genera-based HBI is not very informative from 
the standpoint of identifying key macroinvertebrate response variables, it 
is informative from a general community health perspective.  The second 
component weighted the genera-based metrics for total taxa, clinger 
taxa, EPT taxa and its derivatives Ephemeroptera and Trichoptera taxa, 
as well as intolerant taxa and arcsine-square root transformed percent 
dominant 5 taxa (negative weighting).  The third component was 
comprised of the arcsine-square root transformed percent Trichoptera, 
percent Hydropsyche, and the genera-based Trichoptera taxa, all of 
which characterize the caddisfly assemblage.  The fourth component 
only included the log transformed macroinvertebrate density variable.  All 
four components explained a total of 76% of the variation observed in 
sample sites with respect to the macroinvertebrate metrics contained in 
the WVDEP dataset.  The first component, which was mainly comprised 
of EPT metrics and a Chironomidae metric, only accounted for 
approximately 31% of the variation among sample sites with respect to 
macroinvertebrates. 

The percent EPT was strongly and negatively correlated with 
percent Chironomidae (Spearman, -0.686) and the EPT derivatives; 
therefore, the percent EPT variable was selected from the first 
component.  Similarly, the genera-based total taxa (total taxa) was 
strongly correlated with the percent dominant 5 taxa (Spearman, -
0.789), clinger taxa (Spearman, 0.763), Ephemeroptera taxa 
(Spearman, 0.625), EPT taxa (Spearman, 0.724), and intolerant taxa 
(Spearman, 0.662); therefore, the total taxa metric was selected from 
the second component.  The third component was comprised of 
caddisfly metrics; thus, the most heavily weighted variable of percent 
Trichoptera was selected.  Thus, from our initial macroinvertebrate 
PCA, we selected the following variables to be included in a 
subsequent PCA analysis: 

1. percent EPT 
2. genera-based total taxa 
3. percent Trichoptera, and 
4. density 

The second macroinvertebrate PCA extracted two components 
with the arcsine-square root transformed variables of percent 
Trichoptera (0.801) and percent EPT (0.785) weighting in the first 
component and the total taxa (0.940) being heavily weighted in the 
second component.  These two components explained approximately 
64% of the variation observed among sample sites with respect to 
macroinvertebrate metrics.  The percent EPT variable was selected 
from the first component due to its inclusion of both mayflies and 
stoneflies, and total taxa was also selected for inclusion in the overall 

PCA model evaluating relationships between water quality, habitat, 
and macroinvertebrate variables. 

Principal Component Analysis – Overall 
As a result of the individual PCAs described above, a total of 10 

variables were selected for inclusion in the overall PCA to evaluate the 
relative importance of key water quality (5), physical habitat (3), and 
macroinvertebrate (2) variables in characterizing sample sites with 
respect to the available data.  The overall PCA extracted four 
components, with the first component weighting the log transformed 
total magnesium with total taxa, and the second component weighting 
sediment deposition and arcsine-square root transformed percent 
fines.  The log transformed total suspended solids and total iron were 
strongly weighted in the third component.  Channel flow and log 
transformed dissolved oxygen were weighted heavily in the fourth 
component.  These four components explained approximately 55% of 
the variation observed among sampling sites. 

The first component in the overall PCA indicates that total 
macroinvertebrate taxa is moving in the opposite direction of (i.e., is 
negatively correlated with) major ions such as magnesium, indicating a 
strong relationship between the response of the macroinvertebrate 
community and ionic chemistry.  In the initial water quality PCA, total 
magnesium was selected as a surrogate for sulfate, calcium, and pH, 
which may also be important factors to consider regarding biological 
response.  The second component indicates that substrate 
characteristics also are an important factor when trying to explain the 
variation observed among sample sites in Central Appalachian 
streams.  Lastly, total suspended solids, total iron, channel flow, and 
dissolved oxygen also appear to be important factors to consider when 
evaluating these stream site conditions.  Notably, the percent EPT 
metric did not weight heavily in any of the components, although its 
coefficients for both the first and second component indicate this metric 
may be weakly related to ionic chemistry and substrate conditions. 

The key variables identified in the PCA analyses were retained 
and placed into a matrix for further evaluation after the results from the 
APR and CHAID.  This matrix was used to refine the key variables for 
inclusion in a possible three dimensional model to evaluate the non-
linear relationships between water quality, physical habitat, and 
macroinvertebrate metrics. 

All Possible Regressions 
When the total taxa metric was regressed with the water quality 

variables, the best fit APR model was based on three variables that 
included log transformed alkalinity, sulfate, and total aluminum.  
However, these three variables only explained approximately 17% of 
the total variation observed in total taxa.  The best fit physical habitat-
based total taxa APR weighted four variables: bank stabilization, 
undisturbed vegetation, channel alteration, and embeddedness, 
although the maximized R2 was even lower at 9%. 

The six variables identified as contributing to the best fit APR 
models for macroinvertebrate total taxa were combined for an overall 
APR analysis.  The best fit model using both water quality and physical 
habitat variables weighted three variables: undisturbed vegetation, 
channel alteration, and log transformed sulfate, and accounted for 
approximately 21% of the variation observed in total taxa. 

The APR analysis of the transformed percent EPT with water 
quality variables resulted in a best fit model containing five variables: 
fecal coliform, total aluminum, total calcium, chloride, and total 
manganese, and accounted for approximately 24% of the variation 
observed in the percent EPT.  The physical habitat APR resulted in a 
best fit model that included undisturbed vegetation, embeddedness, 
epifaunal substrate, and percent fines, which explained 16% of the 
variation in the percent EPT metric.  When these water quality and 
habitat variables were combined in an overall APR analysis, the best fit 
model included five variables: epifaunal substrate, log transformed 
fecal coliforms, total aluminum, chloride, and total manganese.  This 
model accounted for 28% of the variation observed in the percent EPT 
variable. 
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Chi-square Automatic Interaction Detection 
When evaluating a CHAID decision tree, the first variable after the 

dependent response variable is considered the most important stressor 
in the tree (Figure 1).  The CHAID decision tree presented in Figure 1 
is the combined water quality – physical habitat CHAID model for 
percent EPT. 

 
Figure 1.  The combined water quality and physical habitat CHAID tree 
for percent EPT. 

In this model, epifaunal substrate is the most important stressor 
variable (parent Node 0) for percent EPT.  The box at each node 
shows the mean percent EPT value, the standard deviation for percent 
EPT, the number and percentage of sites with epifaunal substrate 
values in the listed range, and the predicted percent EPT at such 
sample sites.  The nodes that branch from parent Node 0 (child nodes) 
list ranges of epifaunal substrate values (in brackets) such that Node 1 
represents sample sites that scored less than or equal to 9.0 for 
epifaunal substrate.  As epifaunal substrate scores increase (range 
from 0 to 20), the mean percent EPT value generally increases with 
each node.  This response in percent EPT is to be expected, because 
as epifaunal substrate values increase, the quality of the habitat 
measure transitions from poor to optimal conditions.  Sample sites that 
scored relatively high in this metric present a wide variety of natural 
structures in the stream, including fallen trees, large rocks, and cobble, 
all of which create a more complex habitat for aquatic life (Barbour et 
al. 1999). 

Based on the information provided within Nodes 1-3, 
approximately 25% of the sample sites are categorized as having 
marginal to poor epifaunal substrate habitat (i.e., scored less than 11); 
thus, the habitat is less than desirable for benthic invertebrates, 
especially EPT taxa. 

The second most important variable in the percent EPT CHAID 
analysis is fecal coliforms, which branch from three of the epifaunal 
substrate nodes.  At sites that scored greater than 11 for epifaunal 
substrate (i.e., suboptimal to optimal), fecal coliform is an important 
secondary measure that influences the percent EPT metric.  Sites that 
scored 11-13 for epifaunal substrate (Node 4) and exhibited fecal 
coliform levels less than or equal to 999 cfu/ml also exhibited a greater 
percent EPT value (50.4%) as compared to sites with fecal coliforms 
greater than 999 cfu/ml (38.6%).  This relationship is consistent among 
all of the sample sites, such that greater levels of fecal coliforms result in 
a lower percent EPT value.  This relationship suggests that other 
anthropogenic disturbances may be affecting the EPT taxa.  Additional 
factors that influence percent EPT CHAID analysis were pH and bank 
vegetation, which branch out from two of the fecal coliform nodes.  These 
factors appear to influence invertebrate communities in streams that 
scored 11-15 for epifaunal substrate (i.e., suboptimal range) and 
contained relatively low fecal coliform levels. 

The combined water quality – physical habitat CHAID model for 
total taxa showed that sulfate concentration was the most important 
stressor variable (Figure 2).  The model distinguished seven child 
nodes for sulfate concentrations, with the mean total taxa ranging from 
approximately 21 taxa for nodes that exhibited sulfate concentrations 
greater than 504 mg/L, to 31 taxa for nodes that exhibited 
concentrations less than 9.8 mg/L.  However, these seven nodes 

essentially represent a breakpoint between sample sites that exhibit 
sulfate concentrations less than 61 mg/L or greater than 61 mg /L (i.e., 
between nodes 4 and 5). 

 
Figure 2.  The combined water quality and physical habitat CHAID tree 
for total taxa. 

In general, the mean total taxa ranged from 26 to 31 taxa for 
nodes that exhibited sulfate concentrations less than 61 mg /L.  This 
range in sulfate concentrations is very similar to that observed for 
Level 1 Reference sites, which ranged from the detection limit to 
65 mg/L.  For the nodes representing sulfate concentrations greater 
than 61 mg/L, the mean total taxa ranged from 21 to 23 taxa.  While 
mean total taxa varies by approximately 10 taxa across the full range 
of concentrations, the variability in mean total taxa for nodes 
representing concentrations greater than 61 mg/L is considerably less. 

Secondary stressor variables for the combined total taxa model 
include total magnesium and channel alteration.  These two variables 
are important variables to consider when sulfate concentrations are 
generally less than 61 mg/L.  For sample sites characterized by 
Node 4, channel alteration is important to consider because this metric 
provides information regarding large-scale changes in the shape of the 
channel, such as channelization or bank stabilization using rip-rap 
(Barbour et al. 1999).  Channel alteration values less than or equal to 
10 (Figure 2, Node 10) represent poor to marginal conditions for this 
metric, whereas values greater than 16 represent optimal conditions 
for this metric.  The total taxa metric responds predictably to channel 
alteration, such that poor to marginal conditions result in fewer total 
taxa when compared to optimal conditions.  Other factors that 
influence total taxa are embeddedness and epifaunal substrate 
conditions.  Both of these variables characterize the available 
substrate conditions, a critical consideration for benthic invertebrates. 

Summary of PCA, APR, and CHAID Analyses 
Our analyses indicate that a single composite parameter, like 

conductivity, cannot explain the variation observed among the Central 
Appalachian macroinvertebrate communities with respect to water 
quality and physical habitat.  Rather, some combination of ionic 
composition, substrate, and channel features may be the most 
appropriate stressor variables to consider. 

These analyses also indicate that total taxa and percent EPT 
abundance are the key response variables to consider when 
evaluating factors that shape the macroinvertebrate community, as 
opposed to a singular focus on Ephemeroptera. Furthermore, EPT 
abundance itself is a composite surrogate for taxa other than mayflies, 
and is a widely used indicator of impairment in benthic communities. 

Additionally, total suspended solids, dissolved oxygen, and fecal 
coliforms appear to be key variables to consider when evaluating these 
stream sites, as they are strong indicators of other anthropogenic 
disturbances in the watersheds.   
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Despite the underlying assumption of Pond et al. (2008), and 
presumably EPA (2010), that conductivity is the primary driver in 
structuring macroinvertebrate community composition in the Central 
Appalachian streams, our analyses indicate that it is more appropriate 
to evaluate multiple possible stressors, including some of the specific 
ions that comprise the measure of specific conductance (Table 2).  
Furthermore, it is also important to consider substrate characteristics 
and habitat disturbance when evaluating macroinvertebrate responses. 

This list of independent stressor variables represents the most 
important variables and their relative ranking of importance for each 
analysis.  For example, the PCA model that considered percent EPT 
along with the key water quality and physical habitat variables revealed 
that percent fines and total magnesium weighted heavily in the first 
component and in the opposite direction of percent EPT.  The total 
suspended solids weighted heavily in the second component.  Thus, 
these three variables are considered important factors that influence 
the percent EPT metric.  Similarly, for the total taxa APR model, three 
important factors, including undisturbed vegetation, channel alteration, 
and sulfate, were sequentially weighted into the APR model, indicating 
that of the three variables, undisturbed vegetation explained the most 
variation in the model. 

Table 2.  List of independent stressor variables considered important 
in the data reduction approach when evaluating stream sites and the 
two dependent response variables (genera-based total taxa and 
percent EPT). 

Principal 
Component 

Analysis 

All Possible 
Regressions 

Chi-square 
Automatic 
Interaction 
Detection 

Genera-based Total Taxa 
Total magnesium Undisturbed vegetation Sulfate 

Percent fines Channel alteration Channel alteration 
Sulfate Total magnesium 

Embeddedness  
 

Epifaunal substrate 
Percent EPT 

Percent fines Undisturbed vegetation Epifaunal substrate 
Total magnesium Epifaunal substrate Fecal coliforms 

Total suspended solids Fecal coliforms Bank vegetation 
Chloride pH 

 
Total manganese  

 
These independent stressor variables were further reviewed for 

their commonality among analyses, as well as their relative influence 
on each dependent response variable.  The variables were then 
ranked to determine the most influential stressor variables for each 
biological response variable (Table 3).  For example, based on our 
data reduction approach, channel alteration and sulfate concentration 
are the two most influential variables with respect to total taxa, while 
epifaunal substrate cover and fecal coliform concentrations are the two 
most influential variables with respect to percent EPT.  The two 
primary stressor variables for each biological response variable are 
related to both physical habitat and water quality conditions, although 
ionic composition appears to be more influential on total taxa than 
percent EPT.  The relative influence of fecal coliforms on percent EPT 
indicates that other anthropogenic disturbances are important factors 
to consider with respect to the benthic macroinvertebrate assemblages 
in West Virginia. 

Based on the results of the PCA, APR, and CHAID analyses, the 
top two ranked stressor variables for each biological response variable 
were included in a 3-dimensional model (TableCurve 3D v4.0.01) to 
evaluate the non-linear relationships.  Total taxa was modeled as a 
function of channel alteration and sulfate, while percent EPT was 
modeled as a function of epifaunal substrate cover and fecal coliforms.  
The best fit model for total taxa explained 21% of the variation 
observed in this metric, while the model for percent EPT explained only 
14%.  While the data reduction analyses provide insight into the key 
variables that influence total taxa and percent EPT, the outcome of the 
3-dimensional modeling is not surprising.  It is well known that multiple 

physicochemical and physical habitat characteristics elicit a variety of 
biological responses, thus a poorly fit model that explains little variation 
in a community composition metric is not unexpected. 

Table 3.  Matrix of sorted and ranked independent stressor variables 
for two dependent response variables (genera-based total taxa and 
percent EPT). 

Principal Component 
Analysis 

All Possible 
Regressions 

Chi-square 
Automatic 

Interaction Detection
Genera-based Total Taxa 

1 Channel alteration Channel alteration 
2 Sulfate Sulfate 

3 Total magnesium  Total magnesium 
4 Undisturbed vegetation  

5 Percent fines   
6  Embeddedness 
7  Epifaunal substrate 

Percent EPT 
1 Epifaunal substrate Epifaunal substrate 
2 Fecal coliforms Fecal coliforms 

3 Percent fines   
4 Undisturbed vegetation  

5 Total magnesium   
6   

7 Total suspended 
solids 

  

8  Bank vegetation 
9 Chloride  

10 Total manganese  
11  pH 

 
Despite the poor 3-dimensional modeling outcome, this data 

reduction approach indicates that physical habitat characteristics such 
as channel alteration, epifaunal substrate cover, and other sediment-
based metrics are important factors to consider, in addition to ionic 
composition (e.g., sulfate and total magnesium), when evaluating 
macroinvertebrate responses.  Additionally, the fecal coliforms variable 
indicates that other anthropogenic disturbances may play a key role in 
EPT composition of West Virginia streams. 

DISCUSSION 

Our analyses of the WABbase dataset indicate that conductivity 
alone cannot explain the variation observed among the Central 
Appalachian macroinvertebrate communities with respect to water 
quality and physical habitat.  Rather, ionic composition, substrate 
composition, and channel features may be the most appropriate 
stressor variables to consider.  Additionally, total suspended solids, 
dissolved oxygen, and fecal coliforms appear to be key variables to 
consider when evaluating these stream sites, as they are strong 
indicators of other anthropogenic disturbances in the watersheds.  
These analyses also indicate that total taxa and percent EPT 
abundance are the key response variables to consider when 
evaluating factors that shape the macroinvertebrate community, as 
opposed to a singular focus on Ephemeroptera.   Therefore, we 
conclude that any regulatory benchmark based on conductivity and 
mayfly abundance is overly simplistic, and not likely to be an accurate 
measure of the biological condition or impairment of benthic 
macroinvertebrate communities. 

It is noteworthy that three other states, Illinois, Indiana, and Iowa, 
have all rejected a composite variable like conductivity or TDS-based 
aquatic life standards in lieu of numeric standards for sulfate and chloride 
that also depend on water hardness.  For Iowa, the current final rules 
(http://www.iowadnr.gov/water/standards/chloride.html) specifically state 
that the existing scientific data support the importance of individual ions 
over composite variables such as TDS because “chloride and sulfate are 
better indicators than integral parameters such as TDS, conductivity, and 
salinity for water quality protection” (IDNR 2009).  Similarly, the Illinois 
EPA proposed a numeric sulfate standard, which was also ultimately 
approved by EPA, to replace TDS standards for the same technical 

http://www.iowadnr.gov/water/standards/chloride.html
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reasons (Norwest Co. 2010).  Indiana proposed essentially the same 
sulfate and chloride criteria equations, which were also approved by EPA 
because “. . . the TDS standard currently in place is inappropriate.  By 
definition TDS is a measure of all dissolved solids, yet we know that the 
toxicity of TDS is exerted by its individual components” (EPA 2008).  
Therefore, the available scientific information does not support 
development of regulatory thresholds based on composite variables such 
as conductivity or TDS, but rather the development of individual numeric 
criteria for specific ions. 

Illinois sulfate criteria 
To illustrate the outcome of using the single-ion approach 

preferred by Illinois, the WABbase chemical data were used to derive 
aquatic life criteria for sulfate as modified by chloride and hardness.  
Using this example, the revised Illinois sulfate criteria are based on a 
range of total hardness and chloride concentrations (Table 4).  Given 
site-specific conditions, sulfate criteria are either set at a constant 
500 mg/L for samples exhibiting less than 100 mg/L total hardness, or 
a constant 2,000 mg/L for samples exhibiting total hardness greater 
than 500 mg/L and chloride concentrations greater than 5 mg/L.  In 
addition, two equations are used to calculate site-specific sulfate 
criteria for samples exhibiting total hardness in the range of 100 to 500 
mg/L and chloride in the range of 5 to 500 mg/L (Table 4). 

The WABbase dataset contained 1,591 samples with paired 
hardness, chloride, and sulfate values, and represented a wide range 
of concentrations.  Each sample was categorized based on total 
hardness and chloride concentrations and assigned a sulfate value 
based on the Illinois sulfate criteria rules (Table 4).  The assigned 
sulfate value was then compared to the measured sulfate value to 
determine whether the sample achieved the Illinois sulfate criteria.  
Less than 1% (15 samples) of the WABbase samples exceeded the 
Illinois sulfate criteria, with the majority of exceedances occurring in the 
samples with hardness levels greater than 500 mg/L.  There are a total 
of 54 samples exhibiting hardness values greater than 500 mg/L over a 
range of chloride concentrations, and 14 of these samples exceeded 
the sulfate criteria.  In contrast, 26% of these WABbase samples 
exceed the proposed conductivity benchmark. 

Table 4.  Illinois sulfate criteria (mg/L, bold values) based on a range 
of hardness and chloride ion concentrations.  The number of WABbase 
water samples within each range is identified by n. 

Ion Ranges Chloride 
 <5 mg/L 

Chloride 
5 to <25 

mg/L 

Chloride 
25 to <500 

mg/L 

Chloride 
≥500 mg/L 

Hardness 
<100 mg/L 

500 
n = 696 

500 
n = 350 

500 
n = 23 

500 
n = 0 

Hardness 
100 to <500 

mg/L 

500 
n = 113 

Eqn 1 
n = 84 
1 of 84 

exceeded 
criteria 

Eqn 2 
n = 270 

2,000 
n = 1 

Hardness 
≥500 mg/L 

500 
n = 10 
6 of 10 

exceeded 
criteria 

2,000 
n = 26 

2,000 
n = 15 
7 of 15 

exceeded 
criteria 

2,000 
n = 3 
1 of 3 

exceeded 
criteria 

Eqn 1: Sulfate = [-57.478 + 5.79(Hardness) + 54.163(Chloride)] x 0.65
Eqn 2: Sulfate = [1,276.7 + 5.508(Hardness) – 1.457(Chloride)] x 0.65

 
This analysis suggests that using a single ion criteria approach 

that incorporates the effects of hardness and chloride provides a 
significantly different indication of which and how many waters are 
likely to impair aquatic life.  While elevated hardness and chloride 
concentrations are known to ameliorate sulfate toxicity (Soucek and 
Kennedy 2005, Soucek 2007), it is unknown whether the specific ionic 
composition of streams in West Virginia differs enough from Illinois 
streams in such a way that would make the single ion approach 
applicable.  Notably, the State of Iowa is also considering adopting the 
same criteria that EPA and Illinois adopted in 2008.  Given the 
empirical relationships between total hardness, chloride ions, and 
sulfate toxicity; the single ion approach warrants closer examination for 

use in Ecoregions 69 and 70 of West Virginia instead of a conductivity-
based benchmark. However, even if this is an improvement over use of 
conductivity alone, it still does not incorporate any of the habitat or 
stream condition indicators that our statistical analysis identified as 
important predictors of macroinvertebrate community structure. 

CONCLUSIONS 

We conclude that the relationship between conductivity and 
changes in benthic macroinvertebrate community structure is neither 
strong nor reliable enough to warrant derivation of a regulatory 
benchmark at this time.  For the most part, this is because Pond et al. 
(2008), and presumably EPA (2010) did not rigorously or 
independently test the primary hypothesis that elevated conductivity 
was the best predictor of changes in macroinvertebrate community 
structure in West Virginia streams associated with CM/VF activities.  
Rather, most of the analysis takes it as a given that conductivity is the 
best predictor.  Furthermore, insufficient laboratory studies are 
available to confirm either the causal mechanisms or conductivity 
thresholds that would confirm the proposed benchmark under the 
specific ion composition of streams in this region.  For similar reasons, 
Illinois, Indiana, and Iowa have rejected the use of TDS or conductivity-
based criteria in lieu of criteria for individual ions such as sulfate or 
chloride. 

Therefore, based on our statistical analysis, we conclude that it is 
inappropriate and inadvisable to adopt a conductivity benchmark until 
or unless such additional study is conducted. This is because many 
ecological factors other than water quality are strongly related to 
benthic macroinvertebrate community structure.  To adopt this 
benchmark without the additional study runs a significant risk of 
expending significant financial resources to reduce conductivity from all 
possible ionic sources, with little confidence that this would provide any 
measureable environmental benefit. 
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