Watershed-based versus At-source-based AMD Treatment: Costs and Benefits

Paul F. Ziemkiewicz, PhD, Director National Mine Land Reclamation Center West Virginia University

Background: Acid Mine Drainage Treatment Costs

The advent of watershed based plans, TMDLs and a renewed focus on removal of stream segments from the CWA sec. 303d list suggests we take a more systematic approach to treating AMD at the watershed scale. As the focus of acid mine drainage (AMD) treatment shifts from single source to watershed scale remediation, we need to rethink whether the methods that have served us in the past are still valid. For example, NPDES permitting, policy and the lack of operations and maintenance funds in AMD treatment programs emphasized passive treatment of individual AMD sources. Experience has shown that construction of treatment systems to treat individual sources can be expensive due to their large number, diffuse nature and spatial distribution. Moreover, landowner access agreements can be difficult or impossible to obtain and construction of access roads to remote locations are costly. Furthermore, due to the uncertainty associated with the long term effectiveness of existing passive technologies, it is becoming increasingly evident that it will take much longer and cost much more to implement the TMDL and restore watersheds through passive, at-source treatment alone.

Other AMD treatment strategies include at source chemical using water-powered lime dosers such as the Aquafix TM. This doser is also suitable for in-stream dosing and was the basis for both in-stream and at source cost comparisons.

This paper evaluates the efficacy of the various AMD remediation approaches on a watershed basis. Specifically, it uses commonly available cost estimators to estimate the most cost effective and ecologically beneficial approach to AMD watershed reclamation.

AMD Treatment Cost/Benefit Analysis

Costs were estimated using the Office of Surface Mining's AMD Treat software. This package estimates both capital and operations/maintenance (M&O) costs. These cost estimates were compared to actual costs supplied by WVDEP. The majority of cost associated with the treatment of acid mine drainage (AMD) is controlled by the following factors:

Factor 1.	Site access	S
Factor 2.	Construction	С
Factor 3.	Alkalinity addition	А
Factor 4.	Oxidation requirement	0
Factor 5.	Sludge disposal	D

AMD treatment, like most enterprises, benefits from economies of scale. The most efficient scenario involves a single, large volume discharge with a single access point and large scale, one time construction. One time mobilization of construction equipment, construction of a single access road, relative few access agreements is obviously less expensive than treating the same amount of acid load at 10 or 100 locations. Viewed simply, in AMD treatment the metric that determines the program's effectiveness is the mass of alkalinity that is delivered to impaired streams (factor 3, above). As the number of treatment sites increases, the proportion of program cost devoted to alkalinity addition decreases as access, construction and sludge disposal costs dominate. It is generally assumed that the cost of AMD treatment for manganese generally doubles the total cost. So the cost of AMD treatment at a given site can be described by equation 1:

equation 1: AMD Cost = S+C+A+O+D

There are many ways to estimate environmental benefits. In this study, recovered stream miles were used. Recovered stream miles were determined by estimating the miles of stream that would be neutralized as a result of a project. Thus, the environmental efficiency of a treatment program would be described by equation 2:

equation 2: Environmental efficiency = AMD Cost/Recovered stream miles

Treatment efficiency, on the other hand, estimates the amount of AMD treatment that will be achieved per dollar invested in a project. It is determined by dividing the AMD treatment cost by the tons of acid load removed by a project. See equation 3:

equation 3: Treatment efficiency= AMD Cost/Tons of acid load removed

Viewed in a Statewide context, the Special Reclamation Fund is the largest of many programs that treat AMD. Others include: the AML program, 10% set aside program, Clean Streams program, Watershed Cooperative Agreements, CWA sec. 319 program. All of these programs play a role in meeting watershed remediation objectives as outlined under CWA sec 303. TMDL and TMDL implementation programs. All of these programs will ultimately be evaluated according to their environmental efficiency.

This study is meant to highlight significant differences between at source and in stream treatment. It is not meant to provide an exhaustive estimate of treatment costs at any particular site. Thus, every attempt was made to apply a consistent approach to cost estimation within the limitations of the site data.

Methods

A comparison of AMD treatment costs was made related to the following scenarios:

• Single AMD sources

- Multiple AMD sources
- Manganese sources.

Actual field sites and their associated data were selected in conjunction with WVDEP from the list of planned Special Reclamation projects. Seven sites were selected:

- Daugherty, 192-77, Preston County
- Daugherty, 17-81, Preston County
- Rockville Mining, S-91-85, Preston County
- Hunt Coal, Inc., U-5071-86, Logan County
- Coal X, Inc., UO-396, Logan County
- C&C Co., UO-36, Logan County
- B&S O-43-84, Nicholas County

In each case, the impact on the receiving stream was estimated by calculating the acid and metal load reductions and the resulting impact on the receiving stream. Metal load reductions were assumed consistent with the site's NPDES permit. The study focused on watersheds with available in-stream monitoring data. An acid/base loading model was used to estimate recovered stream miles.

The WVDEP Special Reclamation Program relies almost solely on calcium oxide dosers. By statute DEP is required to treat discharges within the permit boundaries to technology based standards:

	Act	tive		Post-Min	ing	
			Undergro	und Mine	Surface	e/Prep/Refuse
Parameter	acid	alkaline	Acid	alkaline	acid	alkaline
pН	6-9 *	6-9	6-9	6-9	6-9	6-9
Fe	3.0/6.0	3.0/6.0	3.0/6.0	3.0/6.0		
Mn	2.0/4.0	NA.	2.0/4.0	NA.		
TSS	35.0/70.0	35.0/70.0	35.0/70.0	35.0/70.0		
settlable solids					0.5	0.5

Table 1. Technology Based Limits-New Source Coal Mine.From USEPA Clean WaterAct- NPDES Program:WV Code, ch. 20, article 5A, Water Pollution Control Act.

* monthly average./daily maximum

The treatment alternative included placement of dosers at strategic points in the watershed. Only dosers charged with calcium oxide were considered for both on site and in stream treatment scenarios. Cost estimates were based on the OSMRE software package AMD Treat. For at source treatment schemes the following cost centers were included in the analysis:

• Capital Costs:

- doser installation, pond construction, roads, land access, ditching, engineering
- Annual Costs:
 - water sampling, labor, operations and maintenance, chemical, sludge removal.

The same cost centers were included for in stream schemes except that in-stream treatment implies that sludge will not be collected. Therefore, the costs of pond construction and sludge removal were not included in the in-stream option.

Definitions and Data Interpretation

Within project sites, each WVDEP sampling station was assumed to require separate treatment facilities. Each treatment unit consisted of a lime doser with either a one or a 35 ton bin as determined by the annual acid load. The cost difference between large and small dosers was \$60,000 according to AMD Treat. The design included a single sludge collection pond downstream of each doser. AMD Treat relies heavily on flow and acidity to estimate chemical dosage rates and pond sizing. Dissolved metal concentrations and pH are secondary input parameters. They were used to calculate acidity based on the following formula:

acidity (mg/L)= $50*((3x[Fe]/56)+(3x[A1]/27)+(2x[Mn/55)+(1000*10^{-pH})))$

where acidity is expressed in calcium carbonate equivalents.

The above formula was also used to ensure that acidity estimates and metal concentrations were consistent. The nominal water quality parameters are included in table 2. It was assumed that each site would require 3,000 ft. of road construction. The costs of piping, pipe welding and trenching were not included in the analysis.

Stream mile recovery was based on the length of the affected stream. It was taken as 100% of stream length in the case of on site treatment. In-stream treatment resulted in removal of one half mile of affected channel due to metal precipitation. In reality, this length will be a function of metal loading, flow and channel characteristics. In streams with low metal loadings the affected length will be minor whereas it may well extend beyond a half mile in heavily contaminated streams.

Results

Six cost tables were assembled using AMD Treat that included combinations of acidity from 50 to 500 mg/L and flows from 10 to 240 gpm. Output includes capital and annual costs (table 2). This allows rapid estimation of costs for each treatment unit. These treatment costs were based on WVDEP data for each site. These data were used to develop average site water qualities and flows for study sites (table 3a) and for six completed Special Reclamation sites (table 3b). The seven study sites were then classified according to the following: 1) single AMD discharge, 2) multiple AMD

discharges and 3) manganese only discharges. Table 4 indicates treatment costs for each of these discharges, combined capital and annual costs over an arbitrary 20 year period, miles of stream recovered and two estimates of performance: dollars per mile of stream recovered and acid load removal efficiency.

Stream recovery was based on water quality upstream of the treated discharge. Most sites contained acidic water upstream of the special reclamation site. In these cases treating the discharge to compliance levels would not result in additional recovered habitat in any of the cases evaluated. However, Hunt Coal in Logan County had sites that, appeared to be singular AMD sources to short streams that discharged directly to the Guyandotte River, so treatment of the special reclamation site was credited with recovering the full length of these tributaries to the Guyandotte River.

Only one manganese discharge site was presented: B&S Coal in Nicholas County. The discharge resulted in a Mn concentration of 0.16 mg/L downstream in Muddlety Creek and the discharge channels were less than 0.1 mi. long. Costs were developed directly from AMD Treat and are presented in table 3a.

The results were summarized and sorted according to total project cost, stream recovery, stream recovery cost and acid load removal efficiency (table 5). The lowest costs were associated with projects that had a single source of AMD, or Mn and that were treated at source. Multiple sources were more costly while in stream treatment always resulted in treatment of much higher acid loads. In-stream treatment also resulted in the highest number of recovered stream miles with many of the at source treatments resulting in little or no stream recovery.

In-stream treatment also resulted in the fewest dollars invested per recovered stream mile. Finally when the sites were sorted by acid removal efficiency, in stream treatment resulted in the lowest cost per ton of acid load removed. The lowest treatment efficiencies were observed at the manganese treatment site (B&S) and a site with multiple AMD sources treated at source (C&C Co.).

Discussion

The data presented in this study were based on the results of monitoring reports and a site topo map. The results are not meant to indicate actual site costs; rather they are presented to allow a comparison of order of magnitude costs between several treatment scenarios. Comparisons between actual site costs, and estimates based on the methods used in this study indicate large differences reflecting the strong influence of site specific factors such as topography, access, condition of the road network, piping distances and opportunities for consolidating multiple discharges into single treatment units.

AMD Treat was used throughout to estimate treatment costs. As applied, it tended to underestimate on site treatment costs (there were no comparable, actual costs for in stream dosing). For example, storage of calcium oxide in the doser hoppers is limited to about 120 days. Longer residence times may result in moisture absorption and jamming.

This, and the need to monitor multiple sites leads to the need for nearly year around access, snow plowing and other maintenance. These costs are not included in this analysis.

In addition, in stream flow data were only available for three of the seven sites limiting the number of in stream treatment assessments that could be developed. In stream options were also focused on the immediate receiving stream. It is likely that the efficiency of in stream treatment would increase with the size of the affected watershed. This would increase the number of recovered stream miles while allowing optimal placement of dosers along paved, public roads.

Nonetheless, differences among treatment settings were large enough to allow several conclusions that may influence application of the Special Reclamation Fund.

Conclusions

The study demonstrated that it is possible to classify treatment settings according to performance related to the following parameters (see table 5):

- Total treatment cost. Treatment costs were always least where single treatment units could be installed versus multiple treatment units. This applied to all on site treatment settings and to all but one in-stream treatment site. The later cost was a function of exceptionally high acid loads. Twenty year project costs ranged from \$459,000 to \$2,858,000. The Mn site was among the least expensive treatment sites.
- Stream miles recovered. In stream treatment resulted in much higher stream recoveries (1.5 to 2.5 miles) while at source treatment stream recoveries were always less (0.1 to 0.8 miles). The Mn treatment resulted in negligible stream recovery.
- Environmental efficiency (stream recovery cost). Stream recovery costs ranged from \$14,500 to \$285,000/recovered stream mile. Efficiencies were highest in the three in stream settings and were lowest on sites with multiple AMD sources treated at source. Treatment at the Mn site resulted in one of the least efficient uses of funds with a cost of \$280,000/stream mile recovered.
- Acid removal efficiency. All three of the most efficient sites with respect to AMD treatment were in stream dosing units. Costs per ton of acid load treated ranged from \$175 to \$1,478 while at source treatment efficiencies ranged from \$2,200 to \$272,000.

These results indicate a strong relationship between at source treatment and lower environmental and treatment efficiencies. They also indicate that in stream treatment does not necessarily result in higher total project costs even though in stream treatment always treated higher pollutant loads. Table 2. Cost table used in calculating capital and operating costs for on site AMD treatment based on acidity and flow. The costs are based on OSMRE's AMD Treat software. The table lists cost centers under capital and annual costs. Calcium oxide doser technology was used in all cases. Nominal pH and metal concentrations are included to yield a given acidity value. In stream treatment costs were also calculated from AMD Treat excluding pond construction and sludge removal cost centers

Capital Costs: installation, pond construction, roads, land access, ditching, engineerine Annual Costs: sampling, labor, O&M, chemical, sludge remova

acidity	Fe	Mn	Al	pН	acidity	Fe	Mn	Al	pН	acidity	Fe	Mn	Al	pН
501	35	1	70	3.5	401	31	1	54	3.5	299	22	1	40	3.5
			capital	annual				capital	annual				capital	annual
acidity	flow	load	costs	costs	acidity	flow	load	costs	costs	acidity	flow	load	costs	costs
500	10	11	65,698	20,018	400	10	9	65,698	19,912	300	10	7	65,698	19,790
500	20	22	65,698	23,557	400	20	18	65,698	23,344	300	20	13	65,698	23,099
500	30	33	65,698	27,094	400	30	26	65,698	26,755	300	30	20	65,698	26,408
500	40	44	65,698	30,631	400	40	35	65,698	30,206	300	40	26	65,698	29,717
500	50	55	65,698	34,169	400	50	44	65,698	33,638	300	50	33	65,698	33,026
500	60	66	83,599	38,277	400	60	53	83,599	37,639	300	60	40	83,599	36,905
500	70	77	83,982	41,827	400	70	62	83,599	41,071	300	70	46	83,599	40,214
500	80	88	84,817	45,390	400	80	70	84,104	44,517	300	80	53	83,599	43,523
500	90	99	85,652	48,954	400	90	79	84,850	47,971	300	90	59	83,929	46,842
500	100	110	86,488	52,520	400	100	88	85,597	51,427	300	100	66	84,574	50,172
500	110	121	87,322	56,083	400	110	97	86,342	54,882	300	110	73	85,217	53,501
500	120	132	88,156	59,647	400	120	106	87,088	58,337	300	120	79	85,861	56,831
500	130	143	88,991	63,212	400	130	114	87,834	61,792	300	130	86	86,505	60,160
500	140	154	89,826	66,776	400	140	123	88,579	65,247	300	140	92	87,149	63,490
500	150	165	90,660	70,339	400	150	132	89,324	68,702	300	150	99	87,792	66,819
500	160	176	91,495	73,904	400	160	141	90,070	72,158	300	160	106	88,436	70,149
500	170	187	92,329	77,468	400	170	150	90,815	75,612	300	170	112	89,078	73,478
500	180	198	93,162	81,032	400	180	158	91,561	79,067	300	180	119	89,722	76,807
500	190	209	93,996	84,597	400	190	167	92,305	82,523	300	190	125	90,365	80,137
500	200	220	94,813	88,161	400	200	176	93,051	85,977	300	200	132	91,009	83,466
500	210	231	95,665	91,726	400	210	185	93,796	89,433	300	210	139	91,651	86,796
500	220	242	96,499	95,289	400	220	194	94,541	92,887	300	220	145	92,294	90,125
500	230	253	97,332	98,853	400	230	202	95,286	96,342	300	230	152	92,937	93,455
500	240	264	98,166	102,418	400	240	211	96,031	99,797	300	240	158	93,580	96,784

acidity	Fe	Mn	Al	pН	acidity	Fe	Ν	Лn	Al	pН	acidity	Fe	Mn	Al	pН
200	16	1	25	3.5	100	1	0	1	10	3.5	50	7	' 1	5	4.5
			capital	annual					capital	annual				capital	annual
acidity fl	ow I	oad	costs	costs	acidity	flow	load		costs	costs	acidity	flow	load	costs	costs
200	10	4	65698	19678	100		10	2	65698	19566	50	1		1 65698	19566
200	20	9	65698	22876	100		20	4	65698	22653	50	2	0	2 65698	22653
200	30	13	65698	26073	100	3	30	7	65698	25738	50	3	0	3 65698	25738
200	40	18	65698	29270	100	4	10	9	65698	28823	50	4	0	4 65698	28823
200	50	22	65698	32468	100	Ę	50	11	65698	31910	50	5	0	6 65698	31910
200	60	26	83599	36235	100	6	60	13	83599	35565	50	6	0	7 83599	35565
200	70	31	83599	39433	100	7	70	15	83599	38651	50	7	0	8 83599	38651
200	80	35	83599	42630	100	8	30	18	83599	41736	50	8	0	9 83599	41736
200	90	40	83599	45827	100	ę	90	20	83599	44822	50	9	0 [.]	0 83599	44822
200	100	44	83639	49026	100	10	00	22	83599	47908	50	10	0 ·	1 83599	47908
200	110	48	84189	52240	100	11	10	24	83599	50993	50	11	0 ·	2 83599	50993
200	120	53	84740	55455	100	12	20	26	83617	54079	50	12	0 ·	3 83617	54079
200	130	57	85290	58670	100	13	30	29	84074	57180	50	13	0 ·	4 84074	57180
200	140	62	85840	61885	100	14	10	31	84532	60279	50	14	0 ·	5 84532	60279
200	150	66	86391	65094	100	15	50	33	84988	63380	50	15	0 ·	7 84988	63380
200	160	70	86941	68309	100	16	60	35	85455	66480	50	16	0 ·	8 85445	66480
200	170	75	87491	71524	100	17	70	37	85902	69580	50	17	0 ·	9 85902	69580
200	180	79	88041	74737	100	18	30	40	86359	72681	50	18	0 2	86359	72681
200	190	84	88591	77953	100	19	90	42	86815	86781	50	19	0 2	21 86815	75781
200	200	88	89141	81167	100	20	00	44	87272	78881	50	20	0 2	22 87272	78881
200	210	92	89690	84383	100	2	10	46	87728	81981	50	21	0 2	23 87728	81981
200	220	97	90240	87597	100	22	20	48	88185	85082	50	22	0 2	24 88185	85082
200	230	101	90790	90812	100	23	30	51	88641	88181	50	23	0 2	88641	88181
200	240	106	91340	94033	100	24	10	53	89098	91282	50	24	0 2	89098	91282

Table 3a.	Summary of flows and water quality at eac	h of the study sites.				
192-77	DAUGHERTY	Gum Run of Cheat Riv	/er			
WVDEP		flow	calc acid	I	acid load	
sample #		(gpm)	(mg/L)		(tons/year)	
2071	Total of seeps flowing into pond #211		(<u>9</u> . <u>_</u>)	487.3	(terie, jear)	1.4
2075	outlet of ALD at Site #6		2.5	377.4		2.5
207	Pond in hollow on east side of South site		1.4	335.5		12.0
51	Mouth of UNT of Gum Run	392		354.4		309.3
50	Mouth of Gum Run	626		162.2		253.4
50	totals: At source treatment		1.4	102.2		12.0
	In Stream Doser in Gum Run	626		162.2		253.4
		020).1	102.2		200.4
17-81	DAUGHERTY	Cheat River				
sample #		flow	calc acid	1	acid load	
		(gpm)	(mg/L)		(tons/year)	
267	Pond on east side of North site		3.8	613.3	((0))))))))))))))))))))))))))))))))))))	26.6
2671	Seep into pond #267 on South side		2.0	288.7		7.1
2672	Seep into pond #267 on West side		7.5	441.9		7.0
2012	totals: At source treatment					26.6
	No in stream data, cannot estimate in stream					
S-91-85	ROCKVILLE MINING	Martin Creek of Cheat	Diver			
WVDEP	ROOKVIELE MINING	flow	calc acio		acid load	
sample #				I		
	Discharge need #2	(gpm)	(mg/L)	1040.6	(tons/year)	5.5
2	Discharge pond #3		1.8	1343.6		5.5
3	Discharge pond #5		3.3	271.4		5.2
4	Discharge pond #4		0.0	388.4		32.6
5	Discharge pond #5 into sediment ditch		7.4	156.5		12.0
55	seep to diversion ditch to Pond #5		2.0	610.0		2.7
	totals: At source treatment	102				57.9
	In Stream Doser in Martin Creek to Glade	2384	1.0	63.0		330
U-5071-86	HUNT COAL, INC.	Guyanndotte River				
WVDEP		flow	calc acid	I	acid load	
sample #		(gpm)	(mg/L)		(tons/year)	
1	Mine Discharge	8	3.4	532.3		12.4
2	Seep from fill	().3	246.3		0.2
	totals: At source treatment		3.8			12.6
	Discharges directly to Guyandotte River, N	lo in Stream treatment o	option			
UO-396	COAL X, INC.	Sandlick Ck. of Guyan	ndotte River			
WVDEP		flow	calc acid	l	acid load	
sample #		(gpm)	(mg/L)		(tons/year)	
2	Pond Discharge		9.3	120.0		2.6
3	Above on Sandlick Ck.		3.3	397.7		23.6
4	Below on Rt. Fk. Sandlick Ck.		5.0	41.8		10.1
	totals: At source treatment		9.3			2.6
	In Stream Doser in Sandlick Ck.		3.3	397.7		23.6
UO-36	C & C COMPANY	Unnamed trib. of Guya	andotte River			
WVDEP		flow	calc acio	ı	acid load	
sample #			(mg/L)	•		
1	Upstream Drain	(gpm)	(111g/L) 2.0	203.0	(tons/year)	0.9
	•					
2	Downstream Drain		2.0	6.8		0.03
3	Eliminated Pond above road crossing.	62	2.3	11.0		1.5

O-43-84	B & S	Muddlety Creek of Gauley River	•	
WVDEP		flow	calc acid	acid load
sample #		(gpm)	(mg/L)	(tons/year)
1	Effluent from sediment pond at O-3086-87	27.2	31.7	1.9
10	Downstream Muddlety Creek	23,511	-28.9	32.4

						-						cid Load
S-10-81	Ed-E Development Co., Inc.				of		ey I			Cost of		emoval
		flow	hot acidity	acid load		Capital		Annual		Treatment		fficiency
	Tatal of a second 4.0.0	(gpm)	(mg/L)	(tons/year)	_	cost		cost		per 20 years)		<u>(\$/ton)</u>
	Total of seeps 1,2,3	26.0	1353.9	77.4			\$	•	\$	608,340	\$	393
	Seep 4	6.0	935.0	12.3			\$		\$	512,740	\$	2,077 624
	totals: At source treatment	32.0		89.8	\$	253,840	\$	43,362	\$	1,121,080	\$	624
										• • • •		cid Load
S-1032-86	Ed-E Development Co., Inc.	Cheat River				• • • •				Cost of		emoval
		flow	hot acidity	acid load		Capital		Annual		Treatment		fficiency
	-	(gpm)	(mg/L)	(tons/year)	-	cost	-	cost		per 20 years)		(\$/ton)
	Seep	7.0	850.0	13.1	\$,	\$	24,071	\$	608,340	\$	2,324
	totals: At source treatment	7.0		13.1	\$	126,920	\$	24,071	\$	608,340	\$	2,324
											A	cid Load
EM-32	Borgman Coal Co.	Heather Run o								Cost of		emoval
		flow	hot acidity	acid load		Capital		Annual		Treatment		fficiency
		(gpm)	(mg/L)	(tons/year)		cost		cost	(\$	per 20 years)		(\$/ton)
	UG mine seals and seeps	31.0	400.0	27.3			\$		\$	541,040	\$	992
	totals: At source treatment	31.0		27.3	\$	126,920	\$	20,706	\$	541,040	\$	992
											Ad	cid Load
S-26-85	Wocap Energy Resources	UNT of Church	Run of Cheat							Cost of		emoval
		flow	hot acidity	acid load		Capital		Annual		Treatment		fficiency
		(gpm)	(mg/L)	(tons/year)		cost		cost	(\$	per 20 years)		(\$/ton)
	Mine Discharge	35.0	1030.0	79.3			\$		\$	632,571	\$	399
	totals: At source treatment	35.0		79.3	\$	132,631	\$	24,997	\$	632,571	\$	399
											A	cid Load
S-176-77	Interstate lumber Co.	Roaring Ck. Of								Cost of		emoval
		flow	hot acidity	acid load		Capital		Annual		Treatment		fficiency
						+		cost	(\$)	per 20 years)		(\$/ton)
		(gpm)	(mg/L)	(tons/year)		cost			(Ψ			
	Mine Discharge	25.0	(mg/L) 93.8	5.2		132,340	\$	19,588	\$	524,100	\$	
	Mine Discharge totals: At source treatment					132,340	\$ \$					
		25.0		5.2		132,340		19,588	\$	524,100	\$	
S-60-84		25.0 25.0		5.2		132,340		19,588	\$	524,100	\$ \$	
S-60-84	totals: At source treatment	25.0 25.0	93.8 93.8	5.2		132,340 132,340		19,588	\$	524,100 524,100	\$ \$ R	5,079 emoval
S-60-84	totals: At source treatment	25.0 25.0 UNT of Mill Ru	93.8	5.2 5.2 y Ck.		132,340		<u>19,588</u> 19,588	\$	524,100 524,100 Cost of	\$ \$ R	5,079
S-60-84	totals: At source treatment	25.0 25.0 UNT of Mill Ru flow	93.8 93.8 n of Little Sand hot acidity	5.2 5.2 y Ck. acid load		132,340 132,340 Capital		19,588 19,588 Annual	\$	524,100 524,100 Cost of Treatment	\$ \$ R	fficiency

Table 3b. Estimated costs of six Special Reclamation Projects using the cost estimation parameters of this study.

Table 4. Summary of costs and evaluation parameters for each study site.

			Single	AMD 🗧	disch	arge						
192-77	DAUGHERTY	Gum Run of Che	at River								Stream	Acid Load
	SITE_DESC						Cost	t of	Stream		Recovery	Removal
WVDEP		acid load	Capital		Annual		Trea	atment	recovery		Cost	Efficiency
sample #		(tons/year)	cost		cost		(\$ pe	er 20 years)	(miles)	(\$/mile/year)	(\$/ton)
2071	Total of seeps flowing into pond #211	1.4										
2075	outlet of ALD at Site #6	2.5										
207	Pond in hollow on east side of South site	12.0	\$	65,689	\$	23,344	\$	532,569	0.3	\$	106,514	\$ 2,211
51	Mouth of UNT of Gum Run	309.3										
50	Mouth of Gum Run	253.4										
	totals: At source treatment	12.0	\$	65,689	\$	23,344	\$	532,569	0.3	\$	106,514	\$ 2,211
	In Stream Doser in Gum Run	253.4	\$	146,291	\$	36,944	\$	885,171	2.0	\$	22,129	\$ 175

UO-396	COAL X, INC.										Stream	Acid Load
	SITE_DESC						Cost	of	Stream		Recovery	Removal
WVDEP		acid load	Capital		Annual		Trea	tment	recovery		Cost	Efficiency
sample #		(tons/year)	cost		cost		(\$ pe	er 20 years)	(miles)	(\$	\$/mile/year)	(\$/ton)
2	Pond Discharge	2.6	\$	65,698	\$	19,678	\$	459,258	0.5	\$	45,926	\$ 8,714
3	Above on Sandlick Ck.	23.6										\$ -
4	Below on Rt. Fk. Sandlick Ck.	10.1										\$ -
	totals: At source treatment	2.6	\$	65,698	\$	19,678	\$	459,258	0.1	\$	229,629	\$ 8,714
	In Stream Doser in Sandlick Ck.	23.6	\$	94,325	\$	30,206	\$	698,445	2.4	\$	14,551	\$ 1,478

		М	ult	iple AMD	dis	scharges						
17-81	DAUGHERTY	Cheat River									Stream	Acid Load
	SITE_DESC							Cost of	Stream		Recovery	Removal
WVDEP		acid load		Capital		Annual	-	Treatment	recovery		Cost	Efficiency
sample #		(tons/year)		cost		cost	(\$ p	oer 20 years)	(miles)	(5	\$/mile/year)	(\$/ton)
267	Pond on east side of North site	26.6	\$	65,689	\$	23,557	\$	536,829	0.25	\$	107,366	\$ 1,009
2671	Seep into pond #267 on South side	7.1	\$	65,689	\$	23,099	\$	527,669	0.25	\$	105,534	\$ 3,730
2672	Seep into pond #267 on West side	7.0	\$	65,689	\$	20,018	\$	466,049	0.25	\$	93,210	\$ 3,343
	totals: At source treatment	26.6	\$	197,067	\$	66,674	\$	1,530,547	0.75	\$	102,036	\$ 2,875
	No in stream data, cannot estimate in stream	n treatment option.										

S-91-85	ROCKVILLE MINING										Stream	Acid Load
	SITE_DESC						Co	st of	Stream		Recovery	Removal
WVDEP		acid load	Capita	l	Annua	I	Tre	eatment	recovery		Cost	Efficiency
sample #		(tons/year)	cost		cost		(\$ p	per 20 years)	(miles)	(\$	/mile/year)	(\$/ton)
2	Discharge pond #3	5.5	\$	65,698	\$	18,026	\$	426,218	0.1	\$	213,109	\$ 3,895
3	Discharge pond #5	5.2	\$	65,698	\$	19,790	\$	461,498	0.1	\$	230,749	\$ 4,468
4	Discharge pond #4	32.6	\$	125,698	\$	30,206	\$	729,818	0.1	\$	364,909	\$ 1,120
5	Discharge pond #5 into sediment ditch	12.0	\$	125,698	\$	32,468	\$	775,058	0.1	\$	387,529	\$ 3,238
55	seep to diversion ditch to Pond #5	2.7	\$	65,698	\$	20,018	\$	466,058	0.1	\$	233,029	\$ 8,596
	totals: At source treatment	57.9	\$	448,490	\$	120,508	\$	2,858,650	0.5	\$	285,865	\$ 2,468
	In Stream Doser in Martin Creek to Glade	330.4	\$	94,325	\$	91,601	\$	1,926,345	2.5	\$	38,527	\$ 291

U-5071-86	6 HUNT COAL, INC.										Stream	Acid Load
	SITE_DESC						Cos	st of	Stream		Recovery	Removal
WVDEP		acid load	Capita	l	Annual		Trea	atment	recovery		Cost	Efficiency
sample #		(tons/year)	cost		cost		(\$ p	er 20 years)	(miles)	(\$	/mile/year)	(\$/ton)
1	Mine Discharge	12.4	\$	65,698	\$	20,018	\$	466,058	0.1	\$	466,058	\$ 1,873
2	Seep from fill	0.2	\$	65,698	\$	19,790	\$	461,498	0.1	\$	184,599	\$ 132,834
	totals: At source treatment	12.6	\$	131,396	\$	39,808	\$	927,556	0.2	\$	265,016	\$ 3,676
	Discharges directly to Guyandotte River, No	in Stream treatmer	nt option									

UO-36	C & C COMPANY											Stream		Acid Load
	SITE_DESC							Co	st of	Stream	F	Recovery		Removal
WVDEP	DEP acid load Capital			Annual		Tre	atment	recovery	Cost		Efficiency			
sample #		(tons/year)		cost		cost		(\$ p	per 20 years)	(miles)	(\$/	/mile/year)		(\$/ton)
1	Upstream Drain		0.9	\$	65,698	\$	19,678	\$	459,258	0.5	\$	45,926	\$	25,514
2	Downstream Drain		0.03	\$	65,698	\$	19,566	\$	457,018	0.5	\$	45,702	\$	765,141
3	Eliminated Pond above road crossing.		1.5	\$	83,599	\$	35,565	\$	794,899	0.5	\$	79,490	\$	26,288
	totals: At source treatment		2.4	\$	214,995	\$	74,809	\$	1,711,175	1.5	\$	57,039	\$	272,314
Uns	sufficient upstream flow to allow in stream op	tion												

	Manganese only discharges													
O-43-84	B & S										Stream		Acid Load	
	SITE_DESC							Cost of	Stream		Recovery		Removal	
WVDEP		acid load		Capital		Annual		Treatment	recovery		Cost		Efficiency	
sample #		(tons/year)		cost		cost		(\$/20 years)	(miles)	((\$/mile/year)		(\$/ton)	
1	Effluent from sediment pond at O-3086-87	1.9	\$	65,689	\$	24,779	\$	561,269	0.10	\$	280,635	\$	14,635	
10	Downstream Muddlety Creek	32.4												
	totals: At source treatment	1.9	\$	65,689	\$	24,779	\$	561,269	0.10	\$	280,635	\$	14,635	

Table 5.

Results of cost and benefit analyses sorted according to total 20 year project costs, stream miles recovered, cost per stream mile recovered and acid removal efficiency.

cost per stream mile recovered and acid removal efficiency.										
Site	Treatment Scenario	acid load (tons/year)		Cost of Treatment per 20 years)	Stream recovery (miles)		Stream Recovery Cost (\$/mile/year)		Acid Load Removal Efficiency (\$/ton)	
Sort by 20 year treatment cost										
COAL X, INC. UO-396	single AMD, at source	2.6		459,258	0.1	\$	229,629		8,714	
DAUGHERTY 192-77	single AMD, at source	12.0		532,569	0.3	\$	106,514	\$	2,211	
B&S O-43-84	Mn, at source	1.9	\$	561,269	0.1	\$	280,635	\$	14,635	
COAL X, INC. UO-396	single AMD, in stream	23.6	\$	698,445	2.4	\$	14,551		1,478	
DAUGHERTY 192-77	single AMD, in stream	253.4	\$	885,171	2.0	\$	22,129	\$	175	
HUNT COAL, INC. U-5071-86	multiple AMD, at source	12.6	\$	927,556	0.2	\$	265,016	\$	3,676	
DAUGHERTY 17-81	multiple AMD, at source	26.6		1,530,547	0.8	\$	102,036	\$	2,875	
C&C Co. UO-36	multiple AMD, at source	2.4	\$	1,711,175	1.5	\$	57,039	\$	272,314	
ROCKVILLE MINING S-91-85	multiple AMD, in stream	330.4	\$	1,926,345	2.5	\$	38,527	\$	291	
ROCKVILLE MINING S-91-85	multiple AMD, at source	57.9	\$	2,858,650	0.5	\$	285,865	\$	2,468	
Sort by stream miles recovered										
COAL X, INC. UO-396	single AMD, at source	2.6	\$	459,258	0.1	\$	229,629	\$	8,714	
B&S O-43-84	Mn, at source	1.9	\$	561,269	0.1	\$	280,635	\$	14,635	
HUNT COAL, INC. U-5071-86	multiple AMD, at source	12.6	\$	927,556	0.2	\$	265,016	\$	3,676	
DAUGHERTY 192-77	single AMD, at source	12.0	\$	532,569	0.3	\$	106,514	\$	2,211	
ROCKVILLE MINING S-91-85	multiple AMD, at source	57.9	\$	2,858,650	0.5	\$	285,865	\$	2,468	
DAUGHERTY 17-81	multiple AMD, at source	26.6	\$	1,530,547	0.8	\$	102,036	\$	2,875	
C&C Co. UO-36	multiple AMD, at source	2.4	\$	1,711,175	1.5	\$	57,039	\$	272,314	
DAUGHERTY 192-77	single AMD, in stream	253.4	\$	885,171	2.0	\$	22,129	\$	175	
COAL X, INC. UO-396	single AMD, in stream	23.6	\$	698,445	2.4	\$	14,551	\$	1,478	
ROCKVILLE MINING S-91-85	multiple AMD, in stream	330.4	\$	1,926,345	2.5	\$	38,527	\$	291	
sort by stream recovery cost										
COAL X, INC. UO-396	single AMD, in stream	23.6	\$	698,445	2.4	\$	14,551	\$	1,478	
DAUGHERTY 192-77	single AMD, in stream	253.4	\$	885,171	2.0	\$	22,129	\$	175	
ROCKVILLE MINING S-91-85	multiple AMD, in stream	330.4	\$	1,926,345	2.5	\$	38,527	\$	291	
C&C Co. UO-36	multiple AMD, at source	2.4	\$	1,711,175	1.5	\$	57,039	\$	272,314	
DAUGHERTY 17-81	multiple AMD, at source	26.6	\$	1,530,547	0.8	\$	102,036	\$	2,875	
DAUGHERTY 192-77	single AMD, at source	12.0	\$	532,569	0.3	\$	106,514	\$	2,211	
COAL X, INC. UO-396	single AMD, at source	2.6	\$	459,258	0.1	\$	229,629	\$	8,714	
HUNT COAL, INC. U-5071-86	multiple AMD, at source	12.6	\$	927,556	0.2	\$	265,016	\$	3,676	
B&S O-43-84	Mn, at source	1.9	\$	561,269	0.1	\$	280,635	\$	14,635	
ROCKVILLE MINING S-91-85	multiple AMD, at source	57.9	\$	2,858,650	0.5	\$	285,865	\$	2,468	
Sort by acid removal efficiency										
DAUGHERTY 192-77	single AMD, in stream	253.4	\$	885,171	2.0	\$	22,129	\$	175	
ROCKVILLE MINING S-91-85	multiple AMD, in stream	330.4	\$	1,926,345	2.5	\$	38,527	\$	291	
COAL X, INC. UO-396	single AMD, in stream	23.6	\$	698,445	2.4	\$	14,551	\$	1,478	
DAUGHERTY 192-77	single AMD, at source	12.0	\$	532,569	0.3	\$	106,514	\$	2,211	
ROCKVILLE MINING S-91-85	multiple AMD, at source	57.9	\$	2,858,650	0.5	\$	285,865	\$	2,468	
DAUGHERTY 17-81	multiple AMD, at source	26.6	\$	1,530,547	0.8	\$	102,036	\$	2,875	
HUNT COAL, INC. U-5071-86	multiple AMD, at source	12.6	\$	927,556	0.2	\$	265,016	\$	3,676	
COAL X, INC. UO-396	single AMD, at source	2.6	\$	459,258	0.1	\$	229,629	\$	8,714	
B&S O-43-84	Mn, at source	1.9	\$	561,269	0.1	\$	280,635	\$	14,635	
C&C Co. UO-36	multiple AMD, at source	2.4		1,711,175	1.5	\$	57,039		272,314	
	•									