# THE ROTATING CYLINDER TREATMENT SYSTEM RCTS

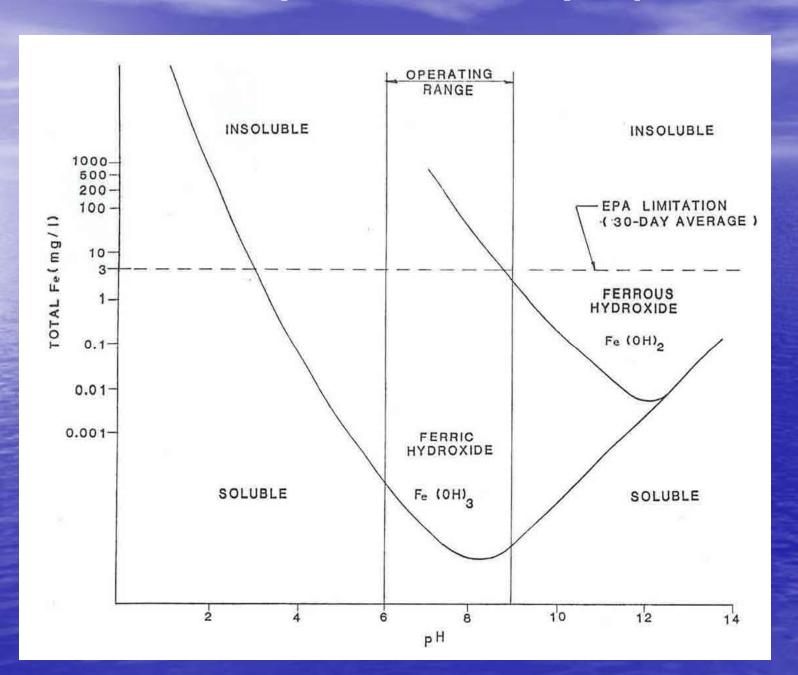
Timothy K. Tsukamoto, Ph.D.



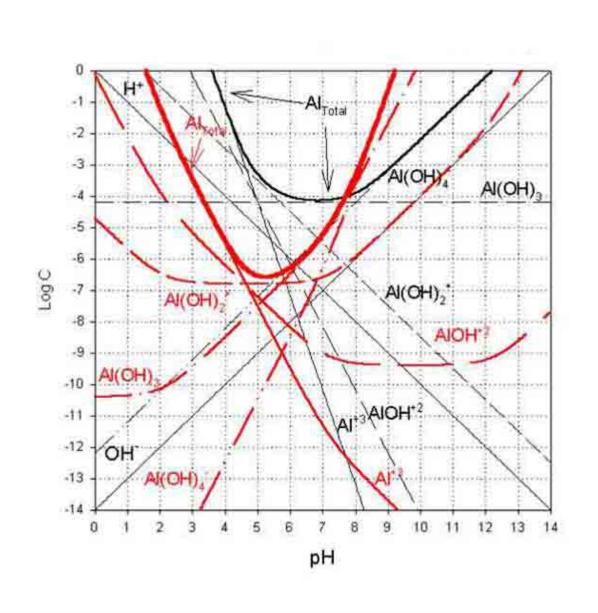
# Treatment of Acid Mine Drainage (Lime Precipitation)

#### -The addition of lime:

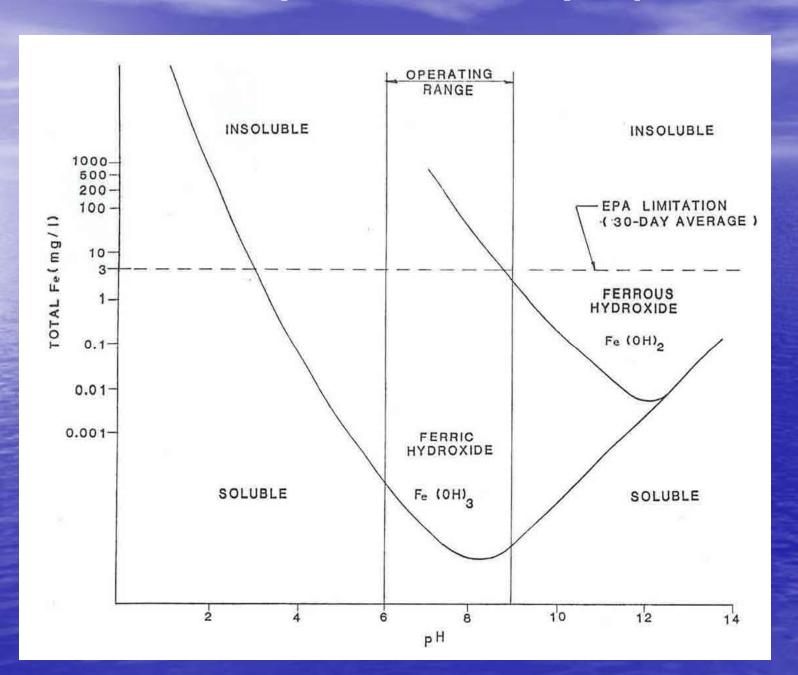
- 1. to raise the pH and precipitate metals as hydroxides
- 2. to precipitate sulfate as gypsum


#### -Requires:

- 1. oxygen addition if dissolved ferrous iron is present Oxygen addition is typically accomplished with compressors and air diffusers placed in reaction tanks.
- 2. thorough mixing due to it's low solubility and slow dissolution rate.


Mixing is typically accomplished with mixers inside of reaction tanks.

-Typically labor intensive due to the requirements listed above


### **Iron Hydroxide Solubility vs pH**



### **Aluminum Hydroxide Solubility vs pH**



### **Iron Hydroxide Solubility vs pH**



# DESIGN AND OPERATIONAL CONCEPT OF THE RCTS TREATMENT SYSTEM

- Rotating perforated cylinders add oxygen from the atmosphere to the water
- Compressors and blowers are eliminated
- Aggressive agitation maximizes reagent efficiency

### **Improved Oxygen Addition**

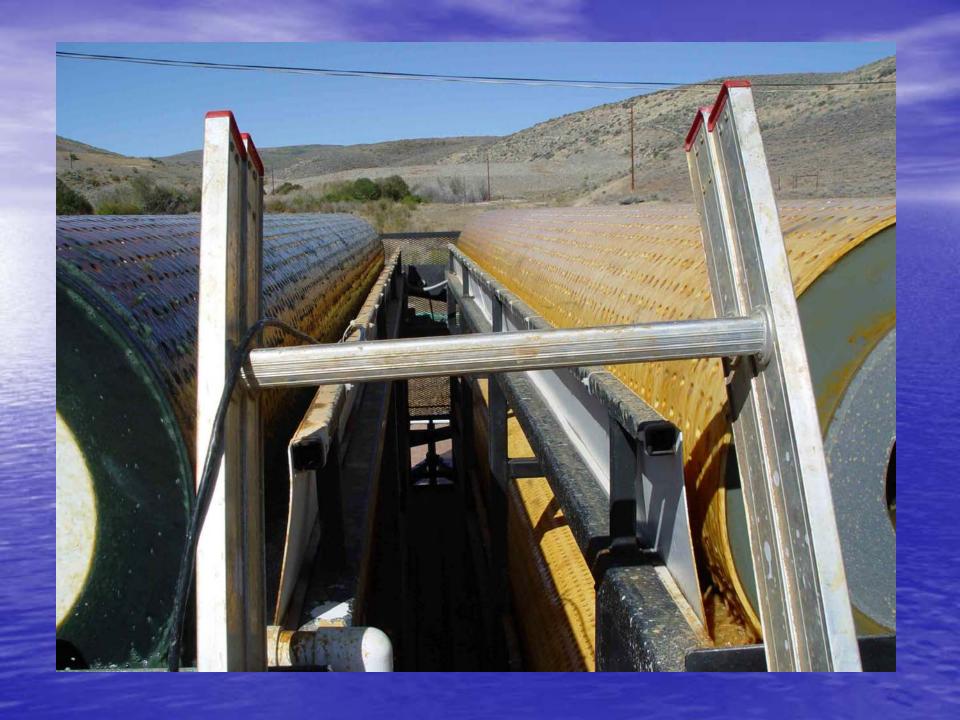
Provides more oxygen per energy consumed than conventional systems mechanical surface aeration systems provides 3.0-3.5 lbs of oxygen per horsepower hour (USEPA 1983)

submerged turbine aerators utilizing dual impeller turbines provide 2.5-3.0 pounds of oxygen per horsepower hour (USEPA 1983)

600 gallon four rotor RCTS provided approximately 9 pounds of oxygen per horsepower hour

$$O_2 = Qw \times Fe \times 7.14 \times 10 -5$$

 $O_2$  = Theoretical  $O_2$  demand (lb  $O_2/hr$ )


**Qw = Acid mine drainage flow rate (gal/min)** 

Fe = Fe  $^{2+}$  initial concentration (mg/L)

Operated on two cylinders powered by 0.375 hp and oxidized  $\sim$  5,000 mg/L of iron at a flow rate of 10 gallons per minute.

### Four Rotor RCTS Unit

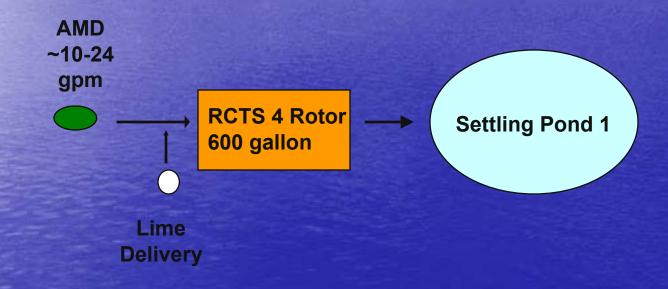





# Single Rotor High Speed RCTS Unit (RCTS-HS)



# RCTS TECHNOLOGY AT THE RIO TINTO MINE IN NORTHEASTERN NEVADA 2003




#### THE RIO TINTO MINE

#### **Highly concentrated AMD**

- The RCTS treated AMD with Fe<sup>2+</sup> concentrations approaching 4,900 mg/l.
- Acidity was in excess of 12,500 mg/l.
- Sulfate concentrations were in excess of 18,000 mg/l.

## **Treatment Schematic 2003 RCTS 4 Rotor Rio Tinto Mine**



### **RIO TINTO MINE IN 2003**

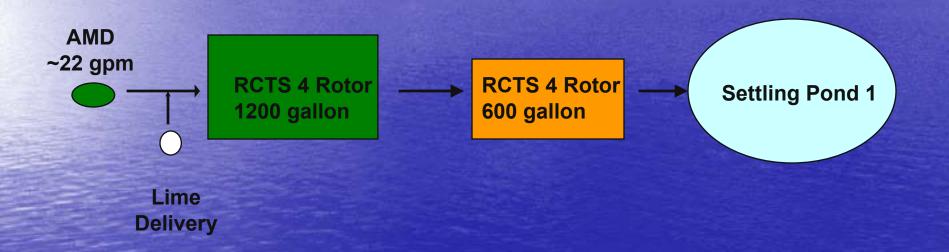
- 600 Gallon Prototype Unit met all Water Quality Standards applicable at the site
- Specific experiments undertaken for the Hybrid RCTS-Sulfate Reducing System
- Aluminum concentrations of 546 mg/l were removed to .009 mg/l during this experiment by the RCTS





## **Treatment Results 2003 RCTS 4 Rotor Rio Tinto Mine**

| Table 2.4.1. 2003 RCTS Results    |       |       |         |          |         |         |        |      |         |        |
|-----------------------------------|-------|-------|---------|----------|---------|---------|--------|------|---------|--------|
| Dissolved Influent Concentrations |       |       |         |          |         |         |        |      |         |        |
| Date                              | TDS   | Al    | As      | Cd       | Cu      | Cr      | Fe     | Mn   | Se      | Zn     |
| 9/19//03                          | 6510  | 124   | 0.0066  | 0.0964   | 53.7    | 0.0126  | 833    | 27.4 | 0.23    | 16.5   |
| 9/20/03                           | 6960  | 133   | 0.0077  | 0.0968   | 57.9    | 0.0134  | 931    | 29.4 | <0.05U  | 17.9   |
| 9/21/03                           | 24200 | 528   | 0.024   | 0.338    | 215     | 0.044   | 4640   | 86.5 | <0.2U   | 62.1   |
| 9/22/03                           | 23300 | 540   | 0.026   | 0.342    | 220     | 0.044   | 4790   | 89.1 | <0.2U   | 64.7   |
| 9/22/03                           | 25200 | 546   | 0.026   | 0.340    | 222     | 0.044   | 4870   | 90.8 | <0.2U   | 65.2   |
| Dissolved Effluent Concentrations |       |       |         |          |         |         |        |      |         |        |
|                                   | TDS   | Al    | As      | Cd       | Cu      | Cr      | Fe     | Mn   | Se      | Zn     |
| 9/19//03                          | 4240  | 0.246 | <0.005U | 0.0006   | 0.016   | 0.0006  | <0.05  | 3.54 | <0.001U | 0.06   |
| 9/20/03                           | 4500  | 0.247 | <0.005U | 0.0007   | 0.017   | 0.0015  | < 0.05 | 4.18 | <0.001U | < 0.05 |
| 9/21/03                           | 8780  | 0.109 | <0.005U | < 0.0005 | 0.019   | 0.0019  | < 0.05 | 3.35 | 0.001   | 0.05   |
| 9/22/03                           | 7380  | 0.077 | <0.005U | < 0.0005 | 0.020   | 0.0019  | < 0.05 | 2.57 | <0.001U | < 0.05 |
| 9/22/03                           | 12300 | 0.009 | <0.001U | 0.025    | 0.093   | 0.004   | < 0.10 | 52.2 | <0.001U | 0.70   |
| 9/24/03                           | 9810  | 0.068 | <0.002U | < 0.0005 | 0.010   | <0.002U | < 0.10 | 3.46 | 0.001   | < 0.05 |
| 9/24/03                           | 9780  | 0.071 | <0.002U | < 0.0005 | < 0.010 | <0.002U | < 0.10 | 3.46 | 0.001   | < 0.05 |


### THE RIO TINTO MINE 2004



# THE RIO TINTO MINE (4-ROTOR) TREATMENT 2004

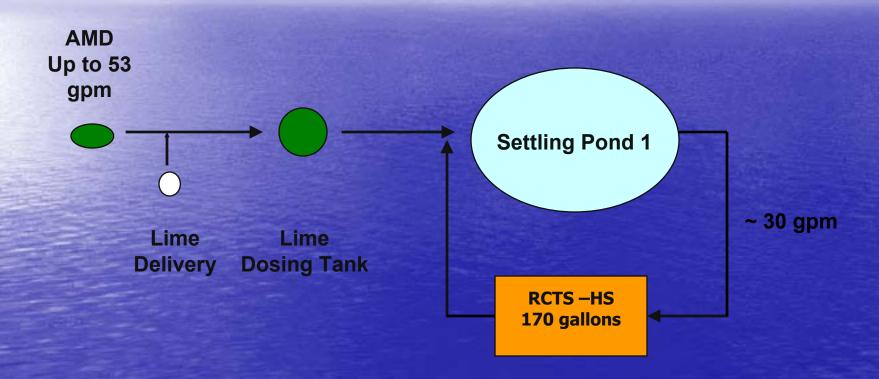


### **Treatment Schematic 2004 RCTS 4 Rotor x 2**



# THE RIO TINTO MINE RCTS-HS 2004




### **RCTS-HS 2004**

 The RCTS-HS prototype was utilized for an emergency water level adjustment of a hydraulic control pond in November of 2004.





# Treatment Schematic 2004 RCTS –HS Rio Tinto Mine



# TYPICAL RESULTS mg/l

| INFLUENT | Unit Type           | Al  | As  | Cd   | Cu  | Fe   | Mn   | Zn   |
|----------|---------------------|-----|-----|------|-----|------|------|------|
| 10/4/04  | RCTS 4<br>Rotor x 2 | 491 | nd  | .32  | 202 | 4170 | 77.5 | 54.6 |
| 10/6/04  | RCTS 4<br>Rotor x 2 | 433 | .03 | .278 | 209 | 3550 | 82.6 | 50.9 |
| 11/9/04  | RCTS-HS             | 683 | .03 | .365 | 293 | 4800 | 109  | 74.3 |

| EFFLUENT | Unit Type           | Al | As | Cd   | Cu   | Fe  | Mn   | Zn  |
|----------|---------------------|----|----|------|------|-----|------|-----|
| 10/4/04  | RCTS 4<br>Rotor x 2 | nd | nd | nd   | .037 | .74 | 4.51 | .07 |
| 10/6/04  | RCTS 4<br>Rotor x 2 | nd | nd | .002 | .097 | .11 | 9.54 | .09 |
| 11/9/04  | RCTS-HS             | nd | nd | nd   | .003 | nd  | 4.88 | nd  |

## RCTS TECHNOLOGY AT THE RIO TINTO MINE IN NORTHEASTERN NEVADA 2004

#### **Results:**

- The RCTS met all Federal Water Quality Standards applicable at the site in a single stage pH adjustment of the influent.
- The RCTS-HS met all Federal Water Quality Standards applicable during this emergency lagoon type treatment.
- Treated ~22 gallons/min (RCTS 4 rotor x 2) ~53 gallons/min (RCTS-HS)
- Operated on less than 1600 watts of electricity.
- Lime slurry efficiency ~98%

### RIO TINTO MINE 2005



# RIO TINTO MINE 2005



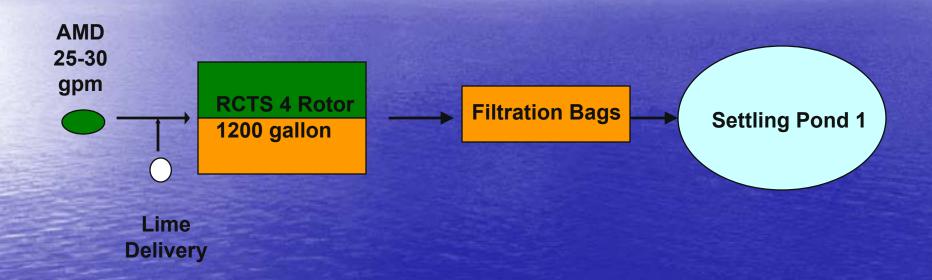
# RIO TINTO MINE 2005



### TYPICAL RESULTS

mg/l

| Table 1. Treatment Results for the Rio Tinto Mine 2005 Concentrations (mg/L) |                        |       |       |        |       |      |       |      |         |
|------------------------------------------------------------------------------|------------------------|-------|-------|--------|-------|------|-------|------|---------|
| Date                                                                         | Sample<br>loca<br>tion | Al    | As    | Cd     | Cu    | Fe   | Mn    | Zn   | Sulfate |
| 7/19/2005                                                                    | Influent               | 726   | nd    | 0.340  | 320   | 6780 | 87.3  | 73.6 | 24,100  |
| 7/19/2005                                                                    | Effluent               | 0.2   | nd    | nd     | 0.005 | nd   | 1.01  | nd   | 4110    |
| 7/26/2005                                                                    | Influent               | 793   | 0.03  | 0.359  | 314   | 6890 | 96    | 79.4 | 24,180  |
| 7/26/2005                                                                    | Effluent               | 0.1   | nd    | 0.0005 | 0.005 | nd   | 0.52  | nd   | 2,410   |
| 8/5/2005                                                                     | Influent               | 540   | nd    | 0.338  | 228   | 4990 | 80.3  | 60   | 17,600  |
| 8/5/2005                                                                     | Effluent               | 0.08  | nd    | 0.0002 | 0.002 | 0.05 | 0.41  | nd   | 1,800   |
| 8/11/2005                                                                    | Influent               | 297   | nd    | 0.210  | 130   | 2840 | 63.9  | 36.7 | 10,200  |
| 8/11/2005                                                                    | Effluent               | 0.13  | nd    | nd     | 0.01  | nd   | 0.2   | nd   | 1,950   |
| 8/18/2005                                                                    | Influent               | 305   | nd    | 0.200  | 128   | 2950 | 58.1  | 35.2 | 10,900  |
| 8/18/2005                                                                    | Effluent               | 0.114 | nd    | nd     | 0.014 | 0.06 | 0.2   | nd   | 2,070   |
| 9/7/2005                                                                     | Influent               | 572   | nd    | 0.301  | 248   | 5110 | 67.4  | 57.5 | 17,600  |
| 9/7/2005                                                                     | Effluent               | 0.26  | nd    | nd     | 0.018 | 0.40 | 0.23  | nd   | 2,560   |
| 9/23/2005                                                                    | Influent               | 325   | nd    | 0.198  | 139   | 2940 | 58.2  | 36.5 | 9,710   |
| 9/23/2005                                                                    | Effluent               | 0.07  | 0.001 | 0.0002 | 0.009 | nd   | 0.58  | nd   | 2,390   |
| 9/30/2005                                                                    | Influent               | 279   | nd    | 0.230  | 131   | 2570 | 51.9  | 32.3 | 9,910   |
| 9/30/2005                                                                    | Effluent               | 0.04  | 0.001 | 0.0002 | 0.011 | nd   | 0.581 | nd   | 2350    |

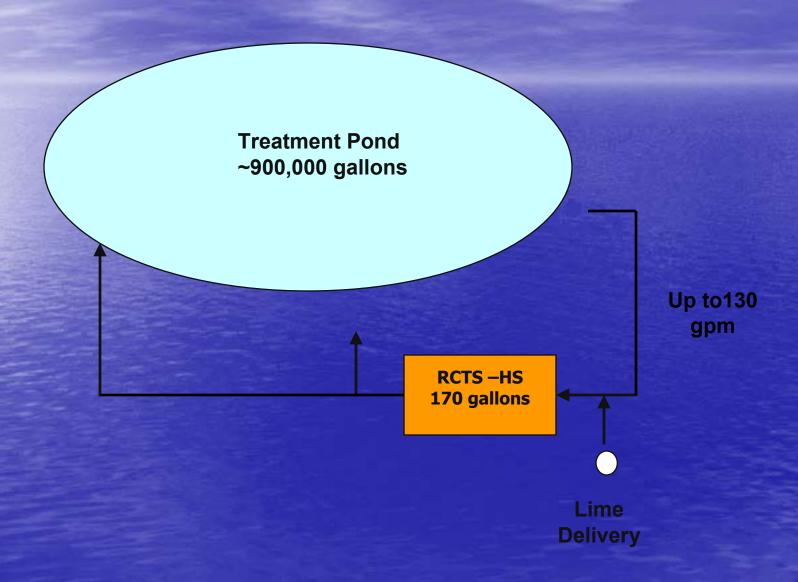

### **RCTS TECHNOLOGY AT THE LEVIATHAN MINE 2004**



### **RCTS TECHNOLOGY AT THE LEVIATHAN MINE 2004**

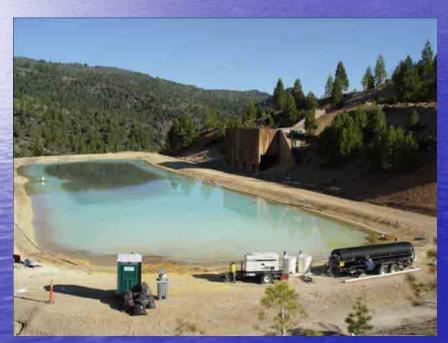


## **Treatment Schematic 2004 RCTS 4 Rotor Leviathan Mine**




#### **LEVIATHAN MINE 2004**

- The RCTS treated 25-30 gpm Fe<sup>2</sup> concentrations of 300 to 400 mg/l.
- Lime slurry efficiency was 41% better than the conventional tank reactor system onsite.
- Influent residence time within the RCTS was 75% less than the conventional tank reactor system onsite.
- Water Quality Standards were met by the RCTS in a single stage pH adjustment.
- The RCTS operated on less than 1600 watts of electricity during treatment operations.




# Treatment Schematic 2004 RCTS –HS Northeastern Nevada



- Mobilize the system in 3 days
- The RCTS treated ~800,000 gallons of AMD in approximately 90 hours.
- Acidity ~ 1,300 mg/L mostly aluminum
- All applicable Water Quality Standards were met
- The RCTS operated on less than 1600 watts of electricity during treatment operations
- Lime efficiency > 89%





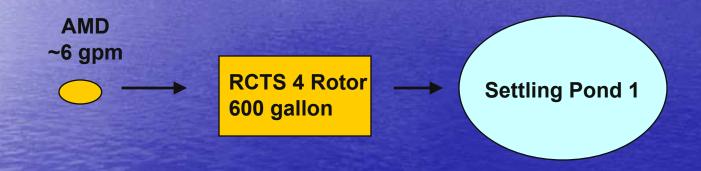




#### **EMPIRE MINE GRASS VALLEY CALIFORNIA**



Flow ~ 6 gpm pH ~ 6.6 iron ~ 4 mg/L arsenic ~ 0.05 mg/L


#### **EMPIRE MINE GRASS VALLEY CALIFORNIA**

#### Goals:

- To oxidize and precipitate the iron and co precipitate arsenic from solution.
- It was initially proposed that sodium hydroxide would be added to raise the pH from 6.6 approximately 8.0.
- The addition of base was not necessary (Degassing of carbon dioxide from the water)

$$HCO_3^- + H^+ \longrightarrow H_2O + CO_2$$

### **Treatment Schematic RCTS 4 Rotor Empire Mine**



#### **EMPIRE MINE GRASS VALLEY CALIFORNIA**

#### **Results:**

Iron concentrations were reduced from 4290 μg/L to 80 μg/L. (without base addition)

The ferrous iron concentration was not sufficient to coprecipitate all of the arsenic from solution. Arsenic was reduced from 47  $\mu$ g/L to 25  $\mu$ g/L.

Suggested adding Ferrous iron to co-precipitate arsenic

### Summary

- Can be rapidly mobilized.
- Efficient lime utilization
- Can reduce sludge production.
- Requires 60% to 90% less expended energy than conventional treatment.
- Less space required.
- Can treat as a batch or continuous.