The effect of gypsum coatings and
hydrodynamic factors
on ALD performance

J. Donald Rimstidt
Danielle M.C. Huminicki

Department of Geosciences
Virginia Tech
Blacksburg VA 24061

DEPARTMENT OF ®

geosclences

AT VIRGINIA TECH



The problem with making

Laboratory laboratory studies useful
measurements| g gcaling them to field
@%Conditions
|
 Need to En?r:gzglr;ng
develop

appropriate %f%«
models

 Need to find u
out model Field tests

parameters

©Rimstidt & Huminicki, 2006 2




In this talk | will show how
geochemical engineering principles
can be used to evaluate the effect of:

* Gypsum coatings on ALD performance
* Hydrodynamics on ALD performance
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Gypsum coatings are
strongly adherent

so they are difficult to
remove
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HFO coatings are not
so they can be
removed by flushing
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Gypsum coatings form at low pH
and high sulfate concentrations
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The gypsum coatings cause the calcite
dissolution rate to decline over time
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The rate declines
because the gypsum
coating acts as a
barrier to hydrogen ion
transport to the calcite
surface

Fick’'s law of
diffusion
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Integrating Fick’s first law using the appropriate
boundary conditions gives us the number of moles
of calcium released from the dissolving calcite as a

function of time

nca,T _ DCBAR t1/2 _ ktl/z
fgyp¢VM

The gypsum layer builds up as a function of t'/2
so the rate declines as a function of t1/2

©Rimstidt & Huminicki, 2006



The Ca is distributed between
solution and the precipitating gypsum
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Determine k empirically from the DC, A4,
data and then find D from k: k=
fgyp¢VM

H* diffusion coefficient in gypsum coating = 5.2x10-14 m?/s
H* diffusion coefficient in seawater = 9.31x108 m?/s
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We tested the model by predicting
the results of our experiments
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Gypsum coatings can be controlled
by lowering the (ac,)(agn4) activity
product

» Sulfate activity can be lowered by
diluting the solutions with water from
non-AMD sources

« Calcium activity can be lowered by
using dolomite to neutralize the acidity
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Neutralization of AMD by calcite releases 1 mole of Ca per
2 moles of H* consumed so we can estimate the (ac,agp)
activity product from pH and mg,

Diluting the solution can avoid gypsum formation in some
cases
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AMD analyses reported by Plumlee et al.1999
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Rate of neutralization by dolomite is greater than calcite
with gypsum coatings after ~1 month of reaction
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THe neutralizatiorfrates of coated calcite are nedrly
iIndependent of pH
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Most of our experiments showed no
gypsum coating development and
the rates were controlled by pH

Experiment Rate law log k
no sulfate r= ka H+0'83 -2.28
sulfate no r= kaH+0.87 -1.84
coatings
coatings r = k95 -1.96
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Calcite dissolution rates are also
controlled by Reynolds number
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We fit calcite dissolution rates as a
function of pH and Re

logr=-0.87pH + 0.51log Re — 3.31
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We recast Re as a function of g and D
In a packed-bed

log r=0.51 log Re — 0.87pH — 3.31
Re = gD/v

q — Darcy velocity (cm/sec)

D — pore diameter (cm)

v — kinematic viscosity (cm?/sec)

log r=0.51 log gD/v — 0.87pH — 3.31
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We can model ALDs as ideal plug
flow reactors
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Governing equations

Integrated rate law

(ﬂjnﬂ _ —kt(—n +1) 1
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Mg g
Residence time f = Vgé
Mass flow rate, m3/sec 0 =qA,

Reactor volume

Vp = (Ac)(l)

k = f(Re)

logk =0.51logRe—3.31

Re =1(q, D)
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Low Darcy velocity leads to
long contact times resulting
In neutralization over a
shorter reactor length
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Low Darcy velocity
means low through-put
so larger installations are
required
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H,CO; is converted to
alkalinity by the reaction:

H,CO, + CaCO,=Ca2* + 2HCO,

Alkalinity generation
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H* is neutralized by the
reaction: :
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2H* + CaCO,=Ca2* + H,CO, .




Small grains have
large surface areas so
they neutralize acid

3= 0.1m/sec o more rapidly
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Improved engineering
Laboratory models suggest more
measurements meaningful experiments
Z
% Field tests calibrate
| model parameters
Performance Engineering
optimization models
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Post mortem failure Field tests

analysis improves models




