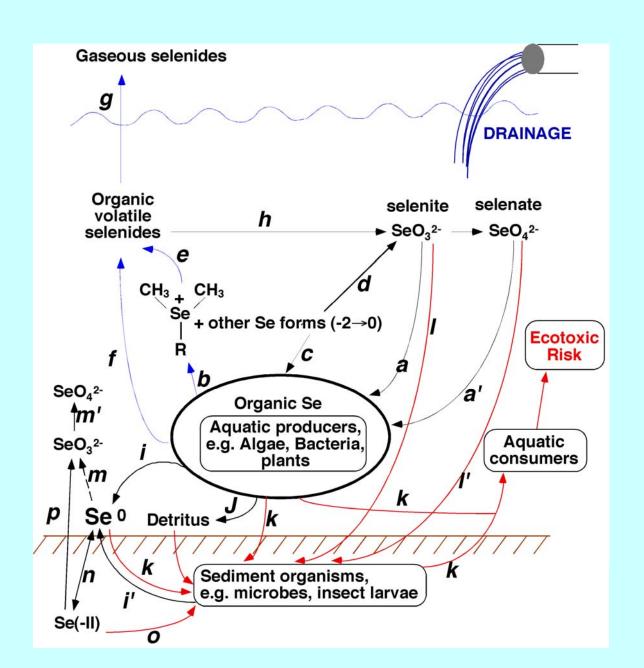
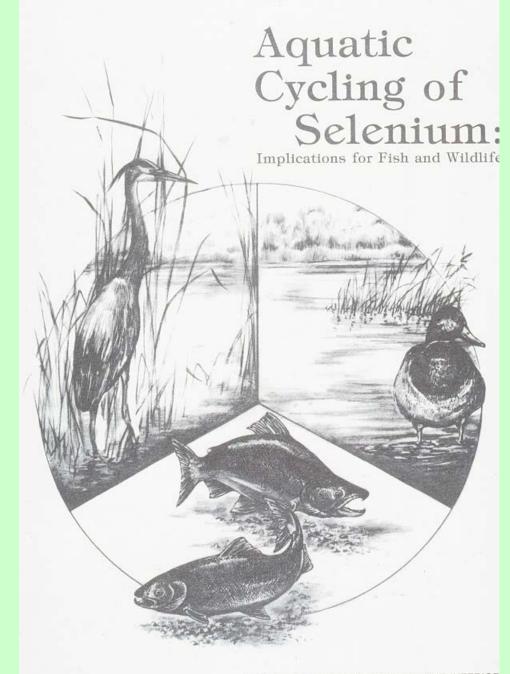


Joseph P. Skorupa, U.S. Fish & Wildlife Service


 Aquatic Life will be considered broadly to include both fish & aquatic-dependent wildlife.

SELENIUM ENVIRONMENTAL CHEMISTRY IS COMPLEX


- SELENIUM IS HORMETIC
- THE BENEFICIAL RANGE IS VERY NARROW

Generalized dose-response curve Decreasing benefit **Beneficial** benefit (plateau) Increasing concentration Toxic Harmful

THE NARROW TOLERANCE RANGE WAS FIRST ESTABLISHED FOR FREE-RANGE LIVESTOCK

 Following toxic episodes at Belews Lake, NC, and Kesterson Reservoir, CA, the sensitivity of aquatic ecosystems began to receive much more attention from ecotoxicologists.

DIETARY EXPOSURE OF VERTEBRATE CONSUMERS IS THE HIGH-RISK PATHWAY FOR SELENIUM TOXICITY

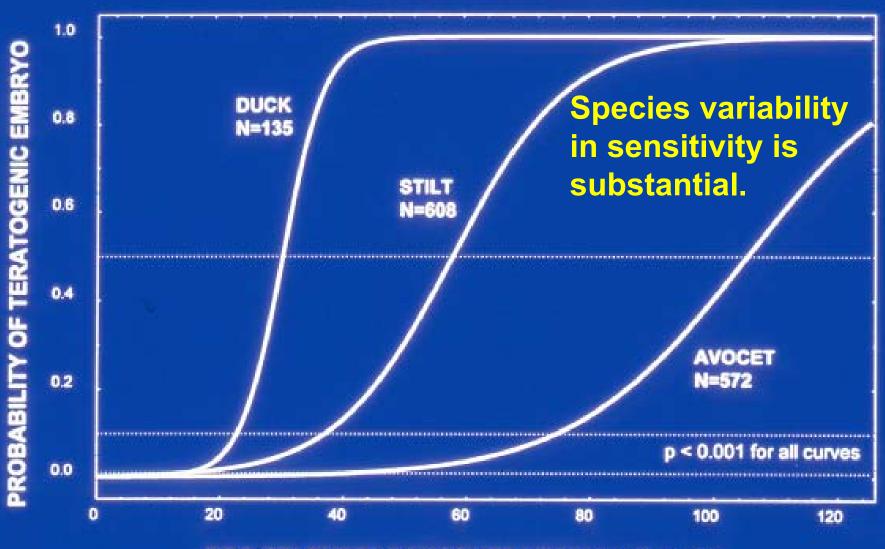
Black-necked stilt foraging on brine flies averaging 55 ug/g Se

Avian eggs that fail to hatch may also contain overtly deformed embryos.

But nonteratogenic hatching failure occurs at lower exposure levels.

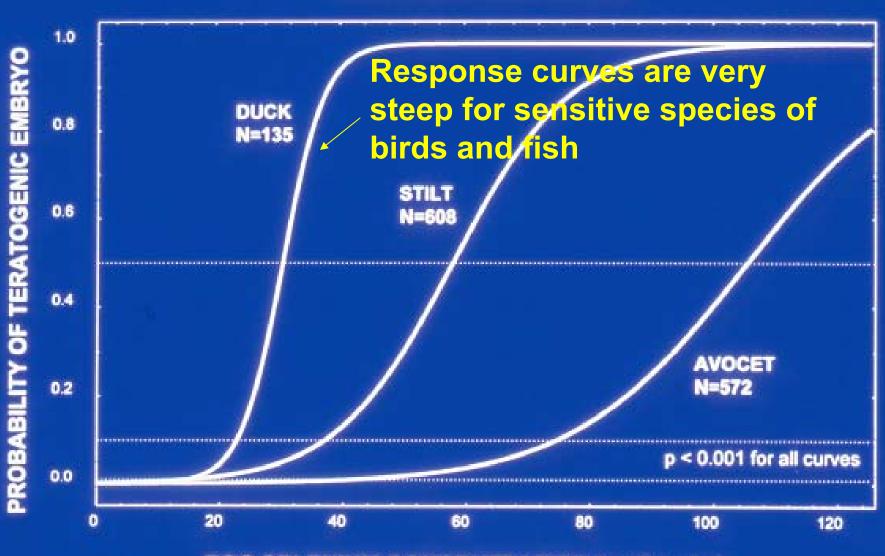
M - 42

A B C



Teratogenic effects are often very consistent within a taxon across different geographic locations

SELENIUM-INDUCED TERATOGENESIS IN NATURE


LOGISTIC RESPONSE CURVES

EGG SELENIUM CONCENTRATION (mg/kg, dw)

SELENIUM-INDUCED TERATOGENESIS IN NATURE

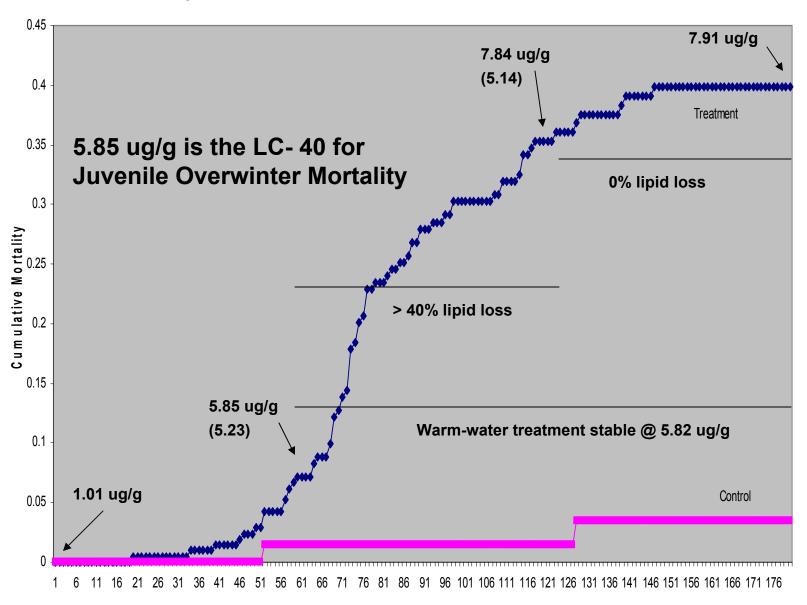
LOGISTIC RESPONSE CURVES

EGG SELENIUM CONCENTRATION (mg/kg, dw)

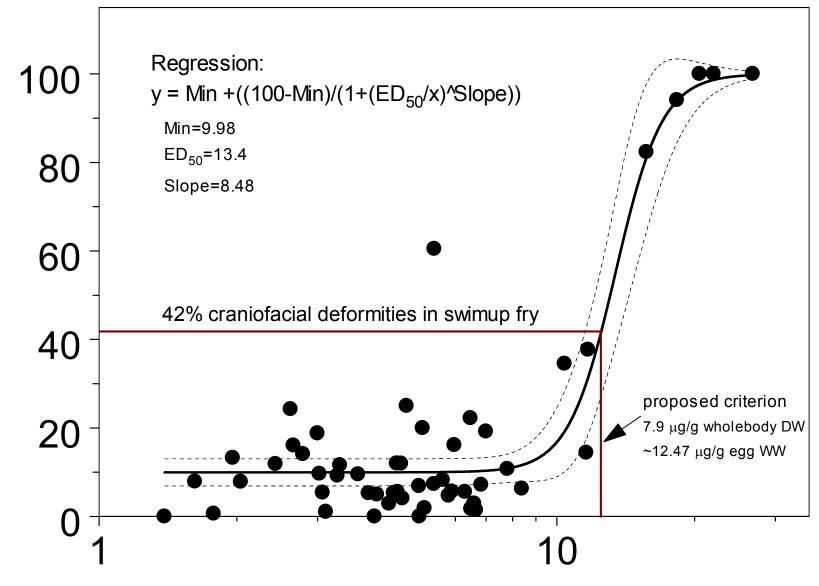
 Documented toxicity thresholds for sensitive taxa of fish and birds are convergent.

Selenium (ug/g dry wgt.)

Risk Thresholds for Sensitive Taxa of Aquatic Life


	None	Marginal	Substantive
Diet, ppm	<3	3 - 7	>7
Fish, ppm, (whole-body)	<4	4 - 6	>6
Avian eggs, ppm	<6	6 - 10	>10

Sources:


CAST (1994); Heinz (1996); Lemly (1996); DOI (1998); Ohlendorf (2003); Presser et al. (2004)

Cold + Se Treatment Day	Fish at Start	Fish at End	Fish Exposure Days	Dead Fish	Dsurv	Cmort
50	205	204	204.5	1	0.995122	0.028572
51	204	204	204	0	1	0.028572
52	204	201	202.5	3	0.985294	0.042858
53	201	201	201	0	1	0.042858
54	201	201	201	0	1	0.042858
55	201	201	201	0	1	0.042858
56	201	201	201	0	1	0.042858
57	201	199	200	2	0.99005	0.052381
58	199	197	198	2	0.98995	0.061905
59	197	196	196.5	1	0.994924	0.066667
60	196	195	195.5	1	0.994898	0.071429
Whole-body Se = 5.85 ug/g			30 fish removed			
61	165	165	165	0	1	0.071429
62	165	165	165	0	1	0.071429
63	165	165	165	0	1	0.071429
64	165	163	164	2	0.987879	0.082684
65	163	162	162.5	1	0.993865	0.088312
66	162	162	162	0	1	0.088312
67	162	162	162	0	1	0.088312
68	162	160	161	2	0.987654	0.099567
69	160	156	158	4	0.975	0.122078
70	156	155	155.5	1	0.99359	0.127706
			3825	20		
			5.23 mortalities per	1,000 Exp.	Days	

Lemly winter-stress results

Rainbow trout, McLeod River drainage, Alberta Jodi Holm pers. com.

Selenium concentration in eggs (µg/g wet weight)

Concluding Comments

- Risk thresholds are for sensitive endpoints, of sensitive species, and EC-05 or lower effect level.
- Egg hatchability is the most sensitive endpoint for birds.
- Post-hatch viability of fry/larvae and overwinter juvenile survival are sensitive endpoints for fish.
- Mallards are a sensitive bird spp.
- Bluegill are a sensitive warmwater fish spp.
- Rainbow trout are a sensitive coldwater fish spp.
- Additional exposure-response curves for the above endpoints and sensitive taxa will further inform us regarding toxicity thresholds.
- Endpoints such as species presence/absence, relative abundance, and age structure are informative only with regard to catastrophic toxicity, not threshold toxicity; especially in demographically open populations.

